José G. Giménez, Martín González, Raquel Martínez-España, José M. Cecilia, J. López-Espín
{"title":"利用深度学习和遥感技术提高浅层水质监测效率:梅诺尔湾案例研究","authors":"José G. Giménez, Martín González, Raquel Martínez-España, José M. Cecilia, J. López-Espín","doi":"10.3233/ais-230461","DOIUrl":null,"url":null,"abstract":"Satellite remote sensing technology has proven effective in monitoring various environmental parameters, but its efficiency in assessing shallow lakes has been limited. This study applies state-of-the-art machine and deep learning algorithms supported by classical statistic methods to analyze remote sensing data to measure chlorophyll-a (Chl-a) concentration levels. Focused on a shallow coastal lagoon, Mar Menor, this work analyzes statistically daily Sentinel 3 information behaviour and compares Machine Learning and Deep Learning techniques to enhance efficiency and accuracy data of this satellite. Convolutional Neural Networks (CNNs) stand out as a robust choice, capable of delivering excellent results even in the presence of anomalous events. Our findings demonstrate that the CNN-based approach directly utilizing satellite data yields promising results in monitoring shallow lakes, offering enhanced efficiency and robustness. This research contributes to optimizing remote sensing data to and produce a continuous information flow addressed to monitoring shallow aquatic ecosystems with potential environmental management and conservation applications.","PeriodicalId":508128,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"77 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menor\",\"authors\":\"José G. Giménez, Martín González, Raquel Martínez-España, José M. Cecilia, J. López-Espín\",\"doi\":\"10.3233/ais-230461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite remote sensing technology has proven effective in monitoring various environmental parameters, but its efficiency in assessing shallow lakes has been limited. This study applies state-of-the-art machine and deep learning algorithms supported by classical statistic methods to analyze remote sensing data to measure chlorophyll-a (Chl-a) concentration levels. Focused on a shallow coastal lagoon, Mar Menor, this work analyzes statistically daily Sentinel 3 information behaviour and compares Machine Learning and Deep Learning techniques to enhance efficiency and accuracy data of this satellite. Convolutional Neural Networks (CNNs) stand out as a robust choice, capable of delivering excellent results even in the presence of anomalous events. Our findings demonstrate that the CNN-based approach directly utilizing satellite data yields promising results in monitoring shallow lakes, offering enhanced efficiency and robustness. This research contributes to optimizing remote sensing data to and produce a continuous information flow addressed to monitoring shallow aquatic ecosystems with potential environmental management and conservation applications.\",\"PeriodicalId\":508128,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"77 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-230461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ais-230461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
卫星遥感技术已被证明能有效监测各种环境参数,但其在评估浅水湖泊方面的效率却很有限。本研究在经典统计方法的支持下,应用最先进的机器学习和深度学习算法来分析遥感数据,以测量叶绿素-a(Chl-a)浓度水平。这项工作以沿海浅泻湖 Mar Menor 为重点,统计分析了哨兵 3 号卫星的日常信息行为,并比较了机器学习和深度学习技术,以提高该卫星数据的效率和准确性。卷积神经网络(CNN)作为一种稳健的选择脱颖而出,即使在出现异常事件时也能提供出色的结果。我们的研究结果表明,基于卷积神经网络的方法直接利用卫星数据,在监测浅水湖泊方面取得了可喜的成果,提高了效率和鲁棒性。这项研究有助于优化遥感数据,并为监测浅水生态系统提供持续的信息流,具有潜在的环境管理和保护应用价值。
Enhancing shallow water quality monitoring efficiency with deep learning and remote sensing: A case study in Mar Menor
Satellite remote sensing technology has proven effective in monitoring various environmental parameters, but its efficiency in assessing shallow lakes has been limited. This study applies state-of-the-art machine and deep learning algorithms supported by classical statistic methods to analyze remote sensing data to measure chlorophyll-a (Chl-a) concentration levels. Focused on a shallow coastal lagoon, Mar Menor, this work analyzes statistically daily Sentinel 3 information behaviour and compares Machine Learning and Deep Learning techniques to enhance efficiency and accuracy data of this satellite. Convolutional Neural Networks (CNNs) stand out as a robust choice, capable of delivering excellent results even in the presence of anomalous events. Our findings demonstrate that the CNN-based approach directly utilizing satellite data yields promising results in monitoring shallow lakes, offering enhanced efficiency and robustness. This research contributes to optimizing remote sensing data to and produce a continuous information flow addressed to monitoring shallow aquatic ecosystems with potential environmental management and conservation applications.