大变形深层软岩隧道最佳预留变形的粘弹性解决方案

Longyu Luo, Mingming He, Guofeng Li
{"title":"大变形深层软岩隧道最佳预留变形的粘弹性解决方案","authors":"Longyu Luo,&nbsp;Mingming He,&nbsp;Guofeng Li","doi":"10.1016/j.ghm.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>In the construction process of soft rock tunnels, determining a reasonable amount of reserved deformation is important to ensure the tunnel stability. This article presents the viscoelastic solution of reserved deformation for deep soft rock tunnels considering the support effects. Based on the analytical solution of the Burgers model, the expression of surrounding rock displacement was derived by considering reserved deformation and optimal reserved deformation. Subsequently, based on numerical simulation experiments, the variation laws and errors of the numerical and analytical solutions of the expressions of reserved deformation and surrounding rock displacement were analyzed. To gain a better understanding of the factors that affect reserved deformation, the factors influencing the expression of optimal reserved deformation were analyzed. The errors in the numerical simulation and analytical solution results were within 10%. This study could provide a theoretical basis for determining the amount of reserved deformation and analyzing the variation law of surrounding rock affected by the amount of reserved deformation.</p></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"2 2","pages":"Pages 83-94"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949741824000050/pdfft?md5=23b020c4d5f193a52bce52dd7126e9f4&pid=1-s2.0-S2949741824000050-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Viscoelastic solution of optimal reserved deformation for deep soft rock tunnels with large deformation\",\"authors\":\"Longyu Luo,&nbsp;Mingming He,&nbsp;Guofeng Li\",\"doi\":\"10.1016/j.ghm.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the construction process of soft rock tunnels, determining a reasonable amount of reserved deformation is important to ensure the tunnel stability. This article presents the viscoelastic solution of reserved deformation for deep soft rock tunnels considering the support effects. Based on the analytical solution of the Burgers model, the expression of surrounding rock displacement was derived by considering reserved deformation and optimal reserved deformation. Subsequently, based on numerical simulation experiments, the variation laws and errors of the numerical and analytical solutions of the expressions of reserved deformation and surrounding rock displacement were analyzed. To gain a better understanding of the factors that affect reserved deformation, the factors influencing the expression of optimal reserved deformation were analyzed. The errors in the numerical simulation and analytical solution results were within 10%. This study could provide a theoretical basis for determining the amount of reserved deformation and analyzing the variation law of surrounding rock affected by the amount of reserved deformation.</p></div>\",\"PeriodicalId\":100580,\"journal\":{\"name\":\"Geohazard Mechanics\",\"volume\":\"2 2\",\"pages\":\"Pages 83-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949741824000050/pdfft?md5=23b020c4d5f193a52bce52dd7126e9f4&pid=1-s2.0-S2949741824000050-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohazard Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949741824000050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741824000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在软岩隧道施工过程中,确定合理的预留变形量对确保隧道稳定性非常重要。本文提出了考虑支护效应的深埋软岩隧道预留变形粘弹性解法。在布尔格斯模型解析解的基础上,通过考虑预留变形和最优预留变形,得出了围岩位移表达式。随后,基于数值模拟实验,分析了预留变形和围岩位移表达式的数值解和分析解的变化规律和误差。为了更好地理解影响预留变形的因素,分析了影响最佳预留变形表达式的因素。数值模拟结果与分析求解结果的误差在 10%以内。该研究为确定预留变形量和分析预留变形量对围岩的影响变化规律提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Viscoelastic solution of optimal reserved deformation for deep soft rock tunnels with large deformation

In the construction process of soft rock tunnels, determining a reasonable amount of reserved deformation is important to ensure the tunnel stability. This article presents the viscoelastic solution of reserved deformation for deep soft rock tunnels considering the support effects. Based on the analytical solution of the Burgers model, the expression of surrounding rock displacement was derived by considering reserved deformation and optimal reserved deformation. Subsequently, based on numerical simulation experiments, the variation laws and errors of the numerical and analytical solutions of the expressions of reserved deformation and surrounding rock displacement were analyzed. To gain a better understanding of the factors that affect reserved deformation, the factors influencing the expression of optimal reserved deformation were analyzed. The errors in the numerical simulation and analytical solution results were within 10%. This study could provide a theoretical basis for determining the amount of reserved deformation and analyzing the variation law of surrounding rock affected by the amount of reserved deformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Optimization design method of 2D+3D slope shape for landslide prevention in open-pit coal mine Stability prediction of roadway surrounding rock using INGO-RF Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1