二次衬砌厚度对大直径盾构隧道双层衬砌机械性能的影响

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Underground Space Pub Date : 2024-03-05 DOI:10.1016/j.undsp.2023.11.015
Shimin Wang, Xuhu He, Xiaoyu Peng, Ya Wang, Zhengxin Li, Zihan Song
{"title":"二次衬砌厚度对大直径盾构隧道双层衬砌机械性能的影响","authors":"Shimin Wang,&nbsp;Xuhu He,&nbsp;Xiaoyu Peng,&nbsp;Ya Wang,&nbsp;Zhengxin Li,&nbsp;Zihan Song","doi":"10.1016/j.undsp.2023.11.015","DOIUrl":null,"url":null,"abstract":"<div><p>In large-diameter shield tunnels, applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining. The secondary lining thickness is a key parameter in the design of a double lining structure, which is worth being explored. Based on an actual large-diameter shield tunnel, loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure. The test results show that within the range of secondary lining thicknesses discussed, the load-bearing limit of the double-layer lining increases with growing secondary lining thickness. As a passive support, the secondary lining acts as an auxiliary load-bearing structure by contacting the segment. And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining, with both the contact pressure level and the contact area between the two varying. For double-layer lining structures in large-diameter shield tunnels, it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment, as this allows them to have a coordinated deformation and a good joint load-bearing effect.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"18 ","pages":"Pages 130-150"},"PeriodicalIF":8.2000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000217/pdfft?md5=4cf80277d56a99e0abf36565b1737038&pid=1-s2.0-S2467967424000217-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of secondary lining thickness on mechanical behaviours of double-layer lining in large-diameter shield tunnels\",\"authors\":\"Shimin Wang,&nbsp;Xuhu He,&nbsp;Xiaoyu Peng,&nbsp;Ya Wang,&nbsp;Zhengxin Li,&nbsp;Zihan Song\",\"doi\":\"10.1016/j.undsp.2023.11.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In large-diameter shield tunnels, applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining. The secondary lining thickness is a key parameter in the design of a double lining structure, which is worth being explored. Based on an actual large-diameter shield tunnel, loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure. The test results show that within the range of secondary lining thicknesses discussed, the load-bearing limit of the double-layer lining increases with growing secondary lining thickness. As a passive support, the secondary lining acts as an auxiliary load-bearing structure by contacting the segment. And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining, with both the contact pressure level and the contact area between the two varying. For double-layer lining structures in large-diameter shield tunnels, it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment, as this allows them to have a coordinated deformation and a good joint load-bearing effect.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"18 \",\"pages\":\"Pages 130-150\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000217/pdfft?md5=4cf80277d56a99e0abf36565b1737038&pid=1-s2.0-S2467967424000217-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000217\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000217","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在大直径盾构隧道中,采用双层衬砌结构可以提高承载性能,保持分段衬砌的稳定性。二次衬砌厚度是双层衬砌结构设计中的关键参数,值得探讨。本文以实际的大直径盾构隧道为基础,通过加载模型试验研究了二次衬砌厚度对双层衬砌结构力学行为的影响。试验结果表明,在讨论的二次衬砌厚度范围内,双层衬砌的承载极限随着二次衬砌厚度的增加而增加。作为一种被动支撑,二次衬里通过与分段接触起到辅助承重结构的作用。而二次衬垫厚度的变化对区段和二次衬垫之间的接触状态有很大影响,两者之间的接触压力水平和接触面积都会发生变化。对于大直径盾构隧道中的双层衬砌结构,建议二次衬砌的刚度需要与区段的刚度相匹配,因为这样才能使它们具有协调的变形和良好的联合承载效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of secondary lining thickness on mechanical behaviours of double-layer lining in large-diameter shield tunnels

In large-diameter shield tunnels, applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining. The secondary lining thickness is a key parameter in the design of a double lining structure, which is worth being explored. Based on an actual large-diameter shield tunnel, loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure. The test results show that within the range of secondary lining thicknesses discussed, the load-bearing limit of the double-layer lining increases with growing secondary lining thickness. As a passive support, the secondary lining acts as an auxiliary load-bearing structure by contacting the segment. And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining, with both the contact pressure level and the contact area between the two varying. For double-layer lining structures in large-diameter shield tunnels, it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment, as this allows them to have a coordinated deformation and a good joint load-bearing effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
期刊最新文献
Series of centrifuge shaking table tests study on seismic response of subway station structures in soft soil sites Analysis of hydraulic breakdown and seepage of tail sealing system in shield tunnel machines Back analysis of geomechanical parameters based on a data augmentation algorithm and machine learning technique Characteristics of deformation and defect of shield tunnel in coastal structured soil in China Numerical analysis of a deep and oversized group excavation: A case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1