Eszter E. Najbauer, Lucza Sinkó, Szilvia Biró, Zsolt Durkó, Peter Basa
{"title":"利用展阻剖面法 (SRP) 和傅立叶变换红外反射仪测量外延硅过渡区","authors":"Eszter E. Najbauer, Lucza Sinkó, Szilvia Biró, Zsolt Durkó, Peter Basa","doi":"10.1002/appl.202300146","DOIUrl":null,"url":null,"abstract":"<p>Silicon epitaxy is an essential building block in the manufacturing of complementary metal-oxide semiconductor (CMOS) devices. Accurate determination of epitaxial layer thickness is indispensable for a uniform and reproducible process. In this paper, we compare thickness values of the transition zone (TZ) in silicon epitaxial wafers obtained by two of Semilab's production-compatible electrical and optical characterization techniques: Fourier-transform infrared (FTIR) reflectometry and spreading resistance profiling (SRP). We demonstrate a high correlation between TZ thicknesses obtained from the optical modeling of FTIR reflectance spectra and SRP profiles. The dependence of TZ thickness change on the high-temperature annealing steps is also examined. FTIR reflectometry thus offers a quick, contactless alternative for obtaining structural parameters of an epitaxial layer, and these values can be well matched to those given by SRP.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300146","citationCount":"0","resultStr":"{\"title\":\"Epitaxial silicon transition zone measurements by spreading resistance profiling and Fourier transform infrared reflectometry\",\"authors\":\"Eszter E. Najbauer, Lucza Sinkó, Szilvia Biró, Zsolt Durkó, Peter Basa\",\"doi\":\"10.1002/appl.202300146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon epitaxy is an essential building block in the manufacturing of complementary metal-oxide semiconductor (CMOS) devices. Accurate determination of epitaxial layer thickness is indispensable for a uniform and reproducible process. In this paper, we compare thickness values of the transition zone (TZ) in silicon epitaxial wafers obtained by two of Semilab's production-compatible electrical and optical characterization techniques: Fourier-transform infrared (FTIR) reflectometry and spreading resistance profiling (SRP). We demonstrate a high correlation between TZ thicknesses obtained from the optical modeling of FTIR reflectance spectra and SRP profiles. The dependence of TZ thickness change on the high-temperature annealing steps is also examined. FTIR reflectometry thus offers a quick, contactless alternative for obtaining structural parameters of an epitaxial layer, and these values can be well matched to those given by SRP.</p>\",\"PeriodicalId\":100109,\"journal\":{\"name\":\"Applied Research\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300146\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/appl.202300146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.202300146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epitaxial silicon transition zone measurements by spreading resistance profiling and Fourier transform infrared reflectometry
Silicon epitaxy is an essential building block in the manufacturing of complementary metal-oxide semiconductor (CMOS) devices. Accurate determination of epitaxial layer thickness is indispensable for a uniform and reproducible process. In this paper, we compare thickness values of the transition zone (TZ) in silicon epitaxial wafers obtained by two of Semilab's production-compatible electrical and optical characterization techniques: Fourier-transform infrared (FTIR) reflectometry and spreading resistance profiling (SRP). We demonstrate a high correlation between TZ thicknesses obtained from the optical modeling of FTIR reflectance spectra and SRP profiles. The dependence of TZ thickness change on the high-temperature annealing steps is also examined. FTIR reflectometry thus offers a quick, contactless alternative for obtaining structural parameters of an epitaxial layer, and these values can be well matched to those given by SRP.