{"title":"长非编码基因 CASC21 多态性与宫颈癌的关系","authors":"Lili Han, Jing Liu, Mireayi Shataer, Chengyong Wu, Mayinuer Niyazi","doi":"10.1080/15384047.2024.2322207","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>CASC21</i> was reported to be a hotspot gene in cervical cancer. The relationship between <i>CASC21</i> genetic polymorphisms and cervical cancer has not been reported. Genetic factors influence the occurrence of cervical cancer. Thus, we explored the correlation between <i>CASC21</i> polymorphisms and cervical cancer.</p><p><strong>Methods: </strong>A total of 973 participants within 494 cervical cancer cases and 479 healthy controls were recruited. Five single nucleotide polymorphisms (SNPs) in the <i>CASC21</i> gene were genotyped using the Agena MassARRAY platform. Chi-squared test, logistic regression analysis, odds ratio (OR), multifactor dimensionality reduction (MDR), and 95% confidence interval (95%CI) were used for data analysis.</p><p><strong>Results: </strong>In the overall analysis, rs16902094 (<i>p</i> = .014, OR = 1.86, 95% CI = 1.12-3.08) and rs16902104 (<i>p</i> = .014, OR = 1.86, 95% CI = 1.12-3.09) had the risk-increasing correlation with the occurrence of cervical cancer. Stratification analysis showed that rs16902094 and rs16902104 were still associated with cervical cancer risk in the subgroups with age > 51, BMI < 24 kg/m<sup>2</sup>, smokers, and patients with cervical squamous cell carcinoma. MDR analysis displayed that rs16902094 (.49%) and rs16902104 (.52%) were the main influential attribution factor for cervical cancer risk.</p><p><strong>Conclusion: </strong>Our finding firstly determined that two <i>CASC21</i> SNPs (rs16902094, rs16902104) were associated with an increased risk of cervical cancer, which adds to our knowledge regarding the effect of <i>CASC21</i> on cervical carcinogenesis.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2322207"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936591/pdf/","citationCount":"0","resultStr":"{\"title\":\"The relationship between long non-coding gene <i>CASC21</i> polymorphisms and cervical cancer.\",\"authors\":\"Lili Han, Jing Liu, Mireayi Shataer, Chengyong Wu, Mayinuer Niyazi\",\"doi\":\"10.1080/15384047.2024.2322207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong><i>CASC21</i> was reported to be a hotspot gene in cervical cancer. The relationship between <i>CASC21</i> genetic polymorphisms and cervical cancer has not been reported. Genetic factors influence the occurrence of cervical cancer. Thus, we explored the correlation between <i>CASC21</i> polymorphisms and cervical cancer.</p><p><strong>Methods: </strong>A total of 973 participants within 494 cervical cancer cases and 479 healthy controls were recruited. Five single nucleotide polymorphisms (SNPs) in the <i>CASC21</i> gene were genotyped using the Agena MassARRAY platform. Chi-squared test, logistic regression analysis, odds ratio (OR), multifactor dimensionality reduction (MDR), and 95% confidence interval (95%CI) were used for data analysis.</p><p><strong>Results: </strong>In the overall analysis, rs16902094 (<i>p</i> = .014, OR = 1.86, 95% CI = 1.12-3.08) and rs16902104 (<i>p</i> = .014, OR = 1.86, 95% CI = 1.12-3.09) had the risk-increasing correlation with the occurrence of cervical cancer. Stratification analysis showed that rs16902094 and rs16902104 were still associated with cervical cancer risk in the subgroups with age > 51, BMI < 24 kg/m<sup>2</sup>, smokers, and patients with cervical squamous cell carcinoma. MDR analysis displayed that rs16902094 (.49%) and rs16902104 (.52%) were the main influential attribution factor for cervical cancer risk.</p><p><strong>Conclusion: </strong>Our finding firstly determined that two <i>CASC21</i> SNPs (rs16902094, rs16902104) were associated with an increased risk of cervical cancer, which adds to our knowledge regarding the effect of <i>CASC21</i> on cervical carcinogenesis.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"25 1\",\"pages\":\"2322207\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936591/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2024.2322207\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2322207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
The relationship between long non-coding gene CASC21 polymorphisms and cervical cancer.
Background: CASC21 was reported to be a hotspot gene in cervical cancer. The relationship between CASC21 genetic polymorphisms and cervical cancer has not been reported. Genetic factors influence the occurrence of cervical cancer. Thus, we explored the correlation between CASC21 polymorphisms and cervical cancer.
Methods: A total of 973 participants within 494 cervical cancer cases and 479 healthy controls were recruited. Five single nucleotide polymorphisms (SNPs) in the CASC21 gene were genotyped using the Agena MassARRAY platform. Chi-squared test, logistic regression analysis, odds ratio (OR), multifactor dimensionality reduction (MDR), and 95% confidence interval (95%CI) were used for data analysis.
Results: In the overall analysis, rs16902094 (p = .014, OR = 1.86, 95% CI = 1.12-3.08) and rs16902104 (p = .014, OR = 1.86, 95% CI = 1.12-3.09) had the risk-increasing correlation with the occurrence of cervical cancer. Stratification analysis showed that rs16902094 and rs16902104 were still associated with cervical cancer risk in the subgroups with age > 51, BMI < 24 kg/m2, smokers, and patients with cervical squamous cell carcinoma. MDR analysis displayed that rs16902094 (.49%) and rs16902104 (.52%) were the main influential attribution factor for cervical cancer risk.
Conclusion: Our finding firstly determined that two CASC21 SNPs (rs16902094, rs16902104) were associated with an increased risk of cervical cancer, which adds to our knowledge regarding the effect of CASC21 on cervical carcinogenesis.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.