{"title":"绘制香橼西瓜耐低温胁迫的遗传结构图。","authors":"Dennis N Katuuramu, Amnon Levi, William P Wechter","doi":"10.1002/tpg2.20443","DOIUrl":null,"url":null,"abstract":"<p><p>Sweet-fleshed watermelon (Citrullus lanatus) is an important vegetable crop of the tropical origin. It is widely grown and consumed around the world for its hydration and nutritional quality values. Low-temperature stress can affect early planting, seedling establishment, and expansion of crop production to new areas. A collection of 122 citron watermelon (Citrullus amarus) accessions were obtained from the USDA's National Plant Germplasm Repository System gene bank in Griffin, GA. The accessions were genotyped using whole genome resequencing to generate single nucleotide polymorphisms (SNPs) molecular markers and screened under cold-stressed and non-stressed control conditions. Four low-temperature stress tolerance related traits including shoot biomass, vine length, maximum quantum efficiency of photosystem II, and chlorophyll content were measured under cold-stressed and non-stressed control treatment conditions. Correlation analysis revealed the presence of positive relationships among traits. Broad-sense heritability for all traits ranged from 0.35 to 0.73, implying the presence of genetic contributions to the observed phenotypic variation. Genomic regions underlying these traits across several citron watermelon chromosomes were identified. Four low-temperature stress tolerance related putative candidate genes co-located with the peak SNPs from genome-wide association study. These genomic regions and marker information could potentially be used in molecular breeding to accelerate genetic improvements for low-temperature stress tolerance in watermelon.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20443"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the genetic architecture of low-temperature stress tolerance in citron watermelon.\",\"authors\":\"Dennis N Katuuramu, Amnon Levi, William P Wechter\",\"doi\":\"10.1002/tpg2.20443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sweet-fleshed watermelon (Citrullus lanatus) is an important vegetable crop of the tropical origin. It is widely grown and consumed around the world for its hydration and nutritional quality values. Low-temperature stress can affect early planting, seedling establishment, and expansion of crop production to new areas. A collection of 122 citron watermelon (Citrullus amarus) accessions were obtained from the USDA's National Plant Germplasm Repository System gene bank in Griffin, GA. The accessions were genotyped using whole genome resequencing to generate single nucleotide polymorphisms (SNPs) molecular markers and screened under cold-stressed and non-stressed control conditions. Four low-temperature stress tolerance related traits including shoot biomass, vine length, maximum quantum efficiency of photosystem II, and chlorophyll content were measured under cold-stressed and non-stressed control treatment conditions. Correlation analysis revealed the presence of positive relationships among traits. Broad-sense heritability for all traits ranged from 0.35 to 0.73, implying the presence of genetic contributions to the observed phenotypic variation. Genomic regions underlying these traits across several citron watermelon chromosomes were identified. Four low-temperature stress tolerance related putative candidate genes co-located with the peak SNPs from genome-wide association study. These genomic regions and marker information could potentially be used in molecular breeding to accelerate genetic improvements for low-temperature stress tolerance in watermelon.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":\" \",\"pages\":\"e20443\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20443\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20443","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Mapping the genetic architecture of low-temperature stress tolerance in citron watermelon.
Sweet-fleshed watermelon (Citrullus lanatus) is an important vegetable crop of the tropical origin. It is widely grown and consumed around the world for its hydration and nutritional quality values. Low-temperature stress can affect early planting, seedling establishment, and expansion of crop production to new areas. A collection of 122 citron watermelon (Citrullus amarus) accessions were obtained from the USDA's National Plant Germplasm Repository System gene bank in Griffin, GA. The accessions were genotyped using whole genome resequencing to generate single nucleotide polymorphisms (SNPs) molecular markers and screened under cold-stressed and non-stressed control conditions. Four low-temperature stress tolerance related traits including shoot biomass, vine length, maximum quantum efficiency of photosystem II, and chlorophyll content were measured under cold-stressed and non-stressed control treatment conditions. Correlation analysis revealed the presence of positive relationships among traits. Broad-sense heritability for all traits ranged from 0.35 to 0.73, implying the presence of genetic contributions to the observed phenotypic variation. Genomic regions underlying these traits across several citron watermelon chromosomes were identified. Four low-temperature stress tolerance related putative candidate genes co-located with the peak SNPs from genome-wide association study. These genomic regions and marker information could potentially be used in molecular breeding to accelerate genetic improvements for low-temperature stress tolerance in watermelon.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.