{"title":"社会经济因素和临床环境可通过机器学习模型预测偶然肺结节随访的依从性。","authors":"","doi":"10.1016/j.jacr.2024.02.031","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To quantify the relative importance of demographic, contextual, socio-economic, and nodule-related factors that influence patient adherence to incidental pulmonary nodule (IPN) follow-up visits and evaluate the predictive performance of machine learning models utilizing these features.</div></div><div><h3>Methods</h3><div><span>We curated a 1,610-subject patient data set from electronic medical records consisting of 13 clinical and socio-economic predictors and IPN follow-up adherence status (timely, delayed, or never) as the outcome. </span>Univariate analysis<span> and multivariate logistic regression were performed to quantify the predictors’ contributions to follow-up adherence. Three additional machine learning models (random forests, neural network, and support vector machine) were fitted and cross-validated to examine prediction performance across different model architectures and evaluate intermodel concordance.</span></div></div><div><h3>Results</h3><div>On univariate basis, all 13 predictors except comorbidity were found to have a significant association with follow-up. In multiple logistic regression, inpatient or emergency clinical context (odds ratio favoring never following up: 7.28 and 8.56 versus outpatient, respectively) and high nodule risk (odds ratio: 0.25 versus low risk) are the most significant predictors of follow-up, and sex, race, and marital status become additionally significant if clinical context is removed from the model. Clinical context itself is associated with sex, race, insurance, employment, marriage, income, nodule risk, and smoking status, suggesting its role in mediating socio-economic inequities. On cross-validation, all four machine learning models demonstrated comparable and good predictive performances, with mean area under the curve ranging from 0.759 to 0.802, with sensitivity 0.641 to 0.660 and specificity 0.768 to 0.840.</div></div><div><h3>Conclusion</h3><div>Socio-economic factors and clinical context are predictive of IPN follow-up adherence, with clinical context being the most significant contributor and likely representing uncaptured socio-economic determinants.</div></div>","PeriodicalId":49044,"journal":{"name":"Journal of the American College of Radiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Socio-Economic Factors and Clinical Context Can Predict Adherence to Incidental Pulmonary Nodule Follow-up via Machine Learning Models\",\"authors\":\"\",\"doi\":\"10.1016/j.jacr.2024.02.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>To quantify the relative importance of demographic, contextual, socio-economic, and nodule-related factors that influence patient adherence to incidental pulmonary nodule (IPN) follow-up visits and evaluate the predictive performance of machine learning models utilizing these features.</div></div><div><h3>Methods</h3><div><span>We curated a 1,610-subject patient data set from electronic medical records consisting of 13 clinical and socio-economic predictors and IPN follow-up adherence status (timely, delayed, or never) as the outcome. </span>Univariate analysis<span> and multivariate logistic regression were performed to quantify the predictors’ contributions to follow-up adherence. Three additional machine learning models (random forests, neural network, and support vector machine) were fitted and cross-validated to examine prediction performance across different model architectures and evaluate intermodel concordance.</span></div></div><div><h3>Results</h3><div>On univariate basis, all 13 predictors except comorbidity were found to have a significant association with follow-up. In multiple logistic regression, inpatient or emergency clinical context (odds ratio favoring never following up: 7.28 and 8.56 versus outpatient, respectively) and high nodule risk (odds ratio: 0.25 versus low risk) are the most significant predictors of follow-up, and sex, race, and marital status become additionally significant if clinical context is removed from the model. Clinical context itself is associated with sex, race, insurance, employment, marriage, income, nodule risk, and smoking status, suggesting its role in mediating socio-economic inequities. On cross-validation, all four machine learning models demonstrated comparable and good predictive performances, with mean area under the curve ranging from 0.759 to 0.802, with sensitivity 0.641 to 0.660 and specificity 0.768 to 0.840.</div></div><div><h3>Conclusion</h3><div>Socio-economic factors and clinical context are predictive of IPN follow-up adherence, with clinical context being the most significant contributor and likely representing uncaptured socio-economic determinants.</div></div>\",\"PeriodicalId\":49044,\"journal\":{\"name\":\"Journal of the American College of Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American College of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1546144024002746\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American College of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1546144024002746","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Socio-Economic Factors and Clinical Context Can Predict Adherence to Incidental Pulmonary Nodule Follow-up via Machine Learning Models
Objective
To quantify the relative importance of demographic, contextual, socio-economic, and nodule-related factors that influence patient adherence to incidental pulmonary nodule (IPN) follow-up visits and evaluate the predictive performance of machine learning models utilizing these features.
Methods
We curated a 1,610-subject patient data set from electronic medical records consisting of 13 clinical and socio-economic predictors and IPN follow-up adherence status (timely, delayed, or never) as the outcome. Univariate analysis and multivariate logistic regression were performed to quantify the predictors’ contributions to follow-up adherence. Three additional machine learning models (random forests, neural network, and support vector machine) were fitted and cross-validated to examine prediction performance across different model architectures and evaluate intermodel concordance.
Results
On univariate basis, all 13 predictors except comorbidity were found to have a significant association with follow-up. In multiple logistic regression, inpatient or emergency clinical context (odds ratio favoring never following up: 7.28 and 8.56 versus outpatient, respectively) and high nodule risk (odds ratio: 0.25 versus low risk) are the most significant predictors of follow-up, and sex, race, and marital status become additionally significant if clinical context is removed from the model. Clinical context itself is associated with sex, race, insurance, employment, marriage, income, nodule risk, and smoking status, suggesting its role in mediating socio-economic inequities. On cross-validation, all four machine learning models demonstrated comparable and good predictive performances, with mean area under the curve ranging from 0.759 to 0.802, with sensitivity 0.641 to 0.660 and specificity 0.768 to 0.840.
Conclusion
Socio-economic factors and clinical context are predictive of IPN follow-up adherence, with clinical context being the most significant contributor and likely representing uncaptured socio-economic determinants.
期刊介绍:
The official journal of the American College of Radiology, JACR informs its readers of timely, pertinent, and important topics affecting the practice of diagnostic radiologists, interventional radiologists, medical physicists, and radiation oncologists. In so doing, JACR improves their practices and helps optimize their role in the health care system. By providing a forum for informative, well-written articles on health policy, clinical practice, practice management, data science, and education, JACR engages readers in a dialogue that ultimately benefits patient care.