具有各向异性表面能的几何流动的结构保持参数有限元方法

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Numerische Mathematik Pub Date : 2024-03-11 DOI:10.1007/s00211-024-01398-8
Weizhu Bao, Yifei Li
{"title":"具有各向异性表面能的几何流动的结构保持参数有限元方法","authors":"Weizhu Bao, Yifei Li","doi":"10.1007/s00211-024-01398-8","DOIUrl":null,"url":null,"abstract":"<p>We propose and analyze a structure-preserving parametric finite element method (SP-PFEM) for the evolution of a closed curve under different geometric flows with arbitrary anisotropic surface energy density <span>\\(\\gamma (\\varvec{n})\\)</span>, where <span>\\(\\varvec{n}\\in \\mathbb {S}^1\\)</span> represents the outward unit normal vector. We begin with the anisotropic surface diffusion which possesses two well-known geometric structures—area conservation and energy dissipation—during the evolution of the closed curve. By introducing a novel surface energy matrix <span>\\(\\varvec{G}_k(\\varvec{n})\\)</span> depending on <span>\\(\\gamma (\\varvec{n})\\)</span> and the Cahn-Hoffman <span>\\(\\varvec{\\xi }\\)</span>-vector as well as a nonnegative stabilizing function <span>\\(k(\\varvec{n})\\)</span>, we obtain a new conservative geometric partial differential equation and its corresponding variational formulation for the anisotropic surface diffusion. Based on the new weak formulation, we propose a full discretization by adopting the parametric finite element method for spatial discretization and a semi-implicit temporal discretization with a proper and clever approximation for the outward normal vector. Under a mild and natural condition on <span>\\(\\gamma (\\varvec{n})\\)</span>, we can prove that the proposed full discretization is structure-preserving, i.e. it preserves the area conservation and energy dissipation at the discretized level, and thus it is unconditionally energy stable. The proposed SP-PFEM is then extended to simulate the evolution of a close curve under other anisotropic geometric flows including anisotropic curvature flow and area-conserved anisotropic curvature flow. Extensive numerical results are reported to demonstrate the efficiency and unconditional energy stability as well as good mesh quality (and thus no need to re-mesh during the evolution) of the proposed SP-PFEM for simulating anisotropic geometric flows.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A structure-preserving parametric finite element method for geometric flows with anisotropic surface energy\",\"authors\":\"Weizhu Bao, Yifei Li\",\"doi\":\"10.1007/s00211-024-01398-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose and analyze a structure-preserving parametric finite element method (SP-PFEM) for the evolution of a closed curve under different geometric flows with arbitrary anisotropic surface energy density <span>\\\\(\\\\gamma (\\\\varvec{n})\\\\)</span>, where <span>\\\\(\\\\varvec{n}\\\\in \\\\mathbb {S}^1\\\\)</span> represents the outward unit normal vector. We begin with the anisotropic surface diffusion which possesses two well-known geometric structures—area conservation and energy dissipation—during the evolution of the closed curve. By introducing a novel surface energy matrix <span>\\\\(\\\\varvec{G}_k(\\\\varvec{n})\\\\)</span> depending on <span>\\\\(\\\\gamma (\\\\varvec{n})\\\\)</span> and the Cahn-Hoffman <span>\\\\(\\\\varvec{\\\\xi }\\\\)</span>-vector as well as a nonnegative stabilizing function <span>\\\\(k(\\\\varvec{n})\\\\)</span>, we obtain a new conservative geometric partial differential equation and its corresponding variational formulation for the anisotropic surface diffusion. Based on the new weak formulation, we propose a full discretization by adopting the parametric finite element method for spatial discretization and a semi-implicit temporal discretization with a proper and clever approximation for the outward normal vector. Under a mild and natural condition on <span>\\\\(\\\\gamma (\\\\varvec{n})\\\\)</span>, we can prove that the proposed full discretization is structure-preserving, i.e. it preserves the area conservation and energy dissipation at the discretized level, and thus it is unconditionally energy stable. The proposed SP-PFEM is then extended to simulate the evolution of a close curve under other anisotropic geometric flows including anisotropic curvature flow and area-conserved anisotropic curvature flow. Extensive numerical results are reported to demonstrate the efficiency and unconditional energy stability as well as good mesh quality (and thus no need to re-mesh during the evolution) of the proposed SP-PFEM for simulating anisotropic geometric flows.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-024-01398-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01398-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并分析了一种结构保留参数有限元方法(SP-PFEM),用于计算封闭曲线在任意各向异性表面能量密度 \(\gamma (\varvec{n})\) 的不同几何流下的演化,其中 \(\varvec{n}\in \mathbb {S}^1\) 表示向外的单位法向量。我们从各向异性表面扩散开始,它在封闭曲线的演化过程中具有两个众所周知的几何结构--面积守恒和能量耗散。通过引入一个新的表面能量矩阵 \(\varvec{G}_k(\varvec{n})\) 取决于 \(\gamma (\varvec{n})\) 和 Cahn-Hoffman \(\varvec{xi }\)-vector 以及一个非负的稳定函数 \(k(\varvec{n})\)、我们得到了一个新的各向异性表面扩散的保守几何偏微分方程及其相应的变分公式。基于新的弱式,我们提出了采用参数有限元法进行空间离散化的全离散化方法,以及对外向法向量进行适当巧妙近似的半隐式时间离散化方法。在对 \(\gamma (\varvec{n})\) 的温和自然条件下,我们可以证明所提出的全离散化是结构保持的,即它在离散化水平上保持了面积守恒和能量耗散,因此它是无条件能量稳定的。随后,提出的 SP-PFEM 被扩展用于模拟近似曲线在其他各向异性几何流(包括各向异性曲率流和面积守恒各向异性曲率流)下的演变。报告的大量数值结果证明了所提出的 SP-PFEM 模拟各向异性几何流的效率、无条件能量稳定性以及良好的网格质量(因此在演变过程中无需重新网格)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A structure-preserving parametric finite element method for geometric flows with anisotropic surface energy

We propose and analyze a structure-preserving parametric finite element method (SP-PFEM) for the evolution of a closed curve under different geometric flows with arbitrary anisotropic surface energy density \(\gamma (\varvec{n})\), where \(\varvec{n}\in \mathbb {S}^1\) represents the outward unit normal vector. We begin with the anisotropic surface diffusion which possesses two well-known geometric structures—area conservation and energy dissipation—during the evolution of the closed curve. By introducing a novel surface energy matrix \(\varvec{G}_k(\varvec{n})\) depending on \(\gamma (\varvec{n})\) and the Cahn-Hoffman \(\varvec{\xi }\)-vector as well as a nonnegative stabilizing function \(k(\varvec{n})\), we obtain a new conservative geometric partial differential equation and its corresponding variational formulation for the anisotropic surface diffusion. Based on the new weak formulation, we propose a full discretization by adopting the parametric finite element method for spatial discretization and a semi-implicit temporal discretization with a proper and clever approximation for the outward normal vector. Under a mild and natural condition on \(\gamma (\varvec{n})\), we can prove that the proposed full discretization is structure-preserving, i.e. it preserves the area conservation and energy dissipation at the discretized level, and thus it is unconditionally energy stable. The proposed SP-PFEM is then extended to simulate the evolution of a close curve under other anisotropic geometric flows including anisotropic curvature flow and area-conserved anisotropic curvature flow. Extensive numerical results are reported to demonstrate the efficiency and unconditional energy stability as well as good mesh quality (and thus no need to re-mesh during the evolution) of the proposed SP-PFEM for simulating anisotropic geometric flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
期刊最新文献
The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws Circuits of ferromagnetic nanowires Efficient approximation of high-frequency Helmholtz solutions by Gaussian coherent states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1