I. Puliti, L. Benedetti, A. Pizzi, J. Fleury, M. Francescone, V. Guillou, Aster Team
{"title":"亚平宁半岛中部莫罗内山断层系统在过去 ∼40 ka 年间恒定滑动速率的证据","authors":"I. Puliti, L. Benedetti, A. Pizzi, J. Fleury, M. Francescone, V. Guillou, Aster Team","doi":"10.1029/2023tc007871","DOIUrl":null,"url":null,"abstract":"Located in the easternmost portion of the Central Apennines, the Mt. Morrone normal fault system is one of the highest seismic hazards in Italy. Previous geological and geomorphological observations revealed the presence of a ∼22 km-long NW-SE right-lateral en echelon fault system made of two parallel faults affecting Quaternary deposits. Our analysis focused on the westernmost fault, which bounds the Sulmona Basin. Cumulative offsets were identified and quantified using high-resolution Digital Elevation Models derived from LiDAR, Satellite Pleiades images, and drone acquisition at the three sites. Morphological markers displaced from a few to tens of meters were dated using <sup>36</sup>Cl exposure dating. The results would be suggesting a fault slip rate of 0.2–0.4 mm/a. The deformed markers that dated at 36–44 ka consist of alluvial terraces emplaced by the main streams flowing down from Mt. Morrone to the Sulmona Basin, subsequently incised, and preserved when the fluvial base level dropped because of the former Sulmona lake fluctuations. The yielded ages for these markers fit well with the last major aggradational event associated with the 35–40 ka Heinrich event described and dated to other fluvial basins in the Apennines. Furthermore, the estimated rate agrees with the values obtained in previous studies over shorter and longer periods (10<sup>5−6</sup> years) and within similar uncertainties. This might then suggest that the period recovered by this study encompasses the entire seismic cycle.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"38 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence for a Constant Slip Rate Over the Last ∼40 ka Along the Mt. Morrone Fault System in Central Apennines\",\"authors\":\"I. Puliti, L. Benedetti, A. Pizzi, J. Fleury, M. Francescone, V. Guillou, Aster Team\",\"doi\":\"10.1029/2023tc007871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Located in the easternmost portion of the Central Apennines, the Mt. Morrone normal fault system is one of the highest seismic hazards in Italy. Previous geological and geomorphological observations revealed the presence of a ∼22 km-long NW-SE right-lateral en echelon fault system made of two parallel faults affecting Quaternary deposits. Our analysis focused on the westernmost fault, which bounds the Sulmona Basin. Cumulative offsets were identified and quantified using high-resolution Digital Elevation Models derived from LiDAR, Satellite Pleiades images, and drone acquisition at the three sites. Morphological markers displaced from a few to tens of meters were dated using <sup>36</sup>Cl exposure dating. The results would be suggesting a fault slip rate of 0.2–0.4 mm/a. The deformed markers that dated at 36–44 ka consist of alluvial terraces emplaced by the main streams flowing down from Mt. Morrone to the Sulmona Basin, subsequently incised, and preserved when the fluvial base level dropped because of the former Sulmona lake fluctuations. The yielded ages for these markers fit well with the last major aggradational event associated with the 35–40 ka Heinrich event described and dated to other fluvial basins in the Apennines. Furthermore, the estimated rate agrees with the values obtained in previous studies over shorter and longer periods (10<sup>5−6</sup> years) and within similar uncertainties. This might then suggest that the period recovered by this study encompasses the entire seismic cycle.\",\"PeriodicalId\":22351,\"journal\":{\"name\":\"Tectonics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023tc007871\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023tc007871","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
莫罗内山正断层系统位于亚平宁半岛中部最东端,是意大利地震危险性最高的地区之一。之前的地质和地貌观测显示,这里存在一个长达 22 公里的 NW-SE 右侧梯形断层系统,由两条平行断层组成,影响着第四纪沉积。我们的分析重点是最西端的断层,它是苏尔莫纳盆地的边界。我们在三个地点利用激光雷达、昴宿星图像和无人机采集的高分辨率数字高程模型确定并量化了累积偏移量。使用 36Cl 暴露年代测定法对位移几米到几十米的形态标记进行了年代测定。结果表明,断层滑动速率为 0.2-0.4 毫米/年。年代为 36-44 ka 的变形标记由冲积阶地组成,这些阶地由从莫罗内山流向苏尔莫纳盆地的主要溪流堆积而成,随后被切割,并在前苏尔莫纳湖波动导致河床基面下降时被保留下来。这些标志物的生成年龄与亚平宁半岛其他河川盆地所描述和测定的 35-40 ka Heinrich 事件相关的最后一次大规模增生事件非常吻合。此外,估计的速率与之前研究中获得的较短和较长时期(105-6 年)的数值一致,且不确定性相似。因此,这可能表明本研究恢复的时期涵盖了整个地震周期。
Evidence for a Constant Slip Rate Over the Last ∼40 ka Along the Mt. Morrone Fault System in Central Apennines
Located in the easternmost portion of the Central Apennines, the Mt. Morrone normal fault system is one of the highest seismic hazards in Italy. Previous geological and geomorphological observations revealed the presence of a ∼22 km-long NW-SE right-lateral en echelon fault system made of two parallel faults affecting Quaternary deposits. Our analysis focused on the westernmost fault, which bounds the Sulmona Basin. Cumulative offsets were identified and quantified using high-resolution Digital Elevation Models derived from LiDAR, Satellite Pleiades images, and drone acquisition at the three sites. Morphological markers displaced from a few to tens of meters were dated using 36Cl exposure dating. The results would be suggesting a fault slip rate of 0.2–0.4 mm/a. The deformed markers that dated at 36–44 ka consist of alluvial terraces emplaced by the main streams flowing down from Mt. Morrone to the Sulmona Basin, subsequently incised, and preserved when the fluvial base level dropped because of the former Sulmona lake fluctuations. The yielded ages for these markers fit well with the last major aggradational event associated with the 35–40 ka Heinrich event described and dated to other fluvial basins in the Apennines. Furthermore, the estimated rate agrees with the values obtained in previous studies over shorter and longer periods (105−6 years) and within similar uncertainties. This might then suggest that the period recovered by this study encompasses the entire seismic cycle.
期刊介绍:
Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.