M-EOS:基于修正平衡优化的堆叠式 CNN,用于内部威胁检测

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Wireless Networks Pub Date : 2024-03-10 DOI:10.1007/s11276-024-03678-5
A. Anju, M. Krishnamurthy
{"title":"M-EOS:基于修正平衡优化的堆叠式 CNN,用于内部威胁检测","authors":"A. Anju, M. Krishnamurthy","doi":"10.1007/s11276-024-03678-5","DOIUrl":null,"url":null,"abstract":"<p>Insider threats remain a serious anxiety for organizations, government agencies, and businesses. Normally, the most hazardous cyber attacks are formed by trusted insiders and not by malicious outsiders. The malicious behaviors resulting from unplanned or planned mishandling of resources, data, networks, and systems of an organization constitute an insider threat. The unsupervised behavioral anomaly detection methods are mostly developed by the traditional machine learning methods for identifying unusual or anomalous variations in user behavior. The insider threat mainly originates from an individual inside the organization who is a current or former employee who has access to sensitive information about the organization. For achieving an improvement over traditional methods, the Stacked Convolutional Neural Network- Attentional Bi-directional Gated Recurrent Unit model is proposed in this paper to detect insider threats. The CNN-Attentional BiGRU model utilizes the user activity logs and user information for time-series classification. Using the log files, the temporal data representations, and weekly and daily numerical features from various sub-models of CNN are learned by the stacked generalization. Based on the chosen feature vectors, a model is trained on the CERT insider threat dataset. The stacked CNN is combined with the Attentional BiGRU model to incorporate more complex features of the user activity logs and user data during each convolution operation without raising network parameters. Thus the classification performance is improved with less complexity. The non-linear time control, chaos-based strategy, update rules, and opposite-based learning strategies are evaluated for generating the Modified-Equilibrium Optimization. The simulation outputs obtained by the model are 92.52% accuracy, 98% Precision, 95% Recall, and 96% F1-score. Thus, the proposed model has reached higher detection performance.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"77 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M-EOS: modified-equilibrium optimization-based stacked CNN for insider threat detection\",\"authors\":\"A. Anju, M. Krishnamurthy\",\"doi\":\"10.1007/s11276-024-03678-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insider threats remain a serious anxiety for organizations, government agencies, and businesses. Normally, the most hazardous cyber attacks are formed by trusted insiders and not by malicious outsiders. The malicious behaviors resulting from unplanned or planned mishandling of resources, data, networks, and systems of an organization constitute an insider threat. The unsupervised behavioral anomaly detection methods are mostly developed by the traditional machine learning methods for identifying unusual or anomalous variations in user behavior. The insider threat mainly originates from an individual inside the organization who is a current or former employee who has access to sensitive information about the organization. For achieving an improvement over traditional methods, the Stacked Convolutional Neural Network- Attentional Bi-directional Gated Recurrent Unit model is proposed in this paper to detect insider threats. The CNN-Attentional BiGRU model utilizes the user activity logs and user information for time-series classification. Using the log files, the temporal data representations, and weekly and daily numerical features from various sub-models of CNN are learned by the stacked generalization. Based on the chosen feature vectors, a model is trained on the CERT insider threat dataset. The stacked CNN is combined with the Attentional BiGRU model to incorporate more complex features of the user activity logs and user data during each convolution operation without raising network parameters. Thus the classification performance is improved with less complexity. The non-linear time control, chaos-based strategy, update rules, and opposite-based learning strategies are evaluated for generating the Modified-Equilibrium Optimization. The simulation outputs obtained by the model are 92.52% accuracy, 98% Precision, 95% Recall, and 96% F1-score. Thus, the proposed model has reached higher detection performance.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03678-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03678-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对于组织、政府机构和企业来说,内部威胁仍然是一个严重的隐患。通常情况下,最危险的网络攻击是由可信的内部人员而非恶意的外部人员形成的。由于对组织的资源、数据、网络和系统进行无计划或有计划的不当处理而产生的恶意行为构成了内部威胁。无监督行为异常检测方法主要由传统的机器学习方法开发,用于识别用户行为中的异常或反常变化。内部威胁主要来自于组织内部的个人,他们是可以接触到组织敏感信息的现任或前任员工。为了改进传统方法,本文提出了堆叠卷积神经网络-注意力双向门控递归单元模型来检测内部威胁。CNN-Attentional BiGRU 模型利用用户活动日志和用户信息进行时间序列分类。利用日志文件,通过堆叠泛化学习 CNN 不同子模型的时间数据表示以及每周和每天的数字特征。根据所选特征向量,在 CERT 内部威胁数据集上训练模型。堆叠 CNN 与注意力 BiGRU 模型相结合,可在每次卷积操作中纳入用户活动日志和用户数据中更复杂的特征,而无需提高网络参数。因此,在降低复杂度的同时提高了分类性能。对非线性时间控制、基于混沌的策略、更新规则和基于相反的学习策略进行了评估,以生成修正平衡优化。该模型的模拟输出结果为:准确率 92.52%、精确率 98%、召回率 95% 和 F1 分数 96%。因此,所提出的模型达到了更高的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M-EOS: modified-equilibrium optimization-based stacked CNN for insider threat detection

Insider threats remain a serious anxiety for organizations, government agencies, and businesses. Normally, the most hazardous cyber attacks are formed by trusted insiders and not by malicious outsiders. The malicious behaviors resulting from unplanned or planned mishandling of resources, data, networks, and systems of an organization constitute an insider threat. The unsupervised behavioral anomaly detection methods are mostly developed by the traditional machine learning methods for identifying unusual or anomalous variations in user behavior. The insider threat mainly originates from an individual inside the organization who is a current or former employee who has access to sensitive information about the organization. For achieving an improvement over traditional methods, the Stacked Convolutional Neural Network- Attentional Bi-directional Gated Recurrent Unit model is proposed in this paper to detect insider threats. The CNN-Attentional BiGRU model utilizes the user activity logs and user information for time-series classification. Using the log files, the temporal data representations, and weekly and daily numerical features from various sub-models of CNN are learned by the stacked generalization. Based on the chosen feature vectors, a model is trained on the CERT insider threat dataset. The stacked CNN is combined with the Attentional BiGRU model to incorporate more complex features of the user activity logs and user data during each convolution operation without raising network parameters. Thus the classification performance is improved with less complexity. The non-linear time control, chaos-based strategy, update rules, and opposite-based learning strategies are evaluated for generating the Modified-Equilibrium Optimization. The simulation outputs obtained by the model are 92.52% accuracy, 98% Precision, 95% Recall, and 96% F1-score. Thus, the proposed model has reached higher detection performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wireless Networks
Wireless Networks 工程技术-电信学
CiteScore
7.70
自引率
3.30%
发文量
314
审稿时长
5.5 months
期刊介绍: The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere. Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.
期刊最新文献
An EEG signal-based music treatment system for autistic children using edge computing devices A DV-Hop localization algorithm corrected based on multi-strategy sparrow algorithm in sea-surface wireless sensor networks Multi-Layer Collaborative Federated Learning architecture for 6G Open RAN Cloud-edge collaboration-based task offloading strategy in railway IoT for intelligent detection Exploiting data transmission for route discoveries in mobile ad hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1