{"title":"喀拉海泰梅尔大陆架(东北极)次冻土层天然气水合物储层的地质特征","authors":"T. V. Matveeva, A. O. Chazov, Yu. Yu. Smirnov","doi":"10.1134/s0016852123070099","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>The conditions for the formation of gas hydrates associated with subsea permafrost in the Kara Sea have been predicted based on numerical modeling. The forecast of the distribution of the relic submarine permafrost and related methane hydrate stability zone is given on the basis of solving the equation of thermal conductivity. According to modeling data, an extensive thermobaric relic submarine permafrost zone is predicted within the Kara Sea shelf. The greatest thickness (up to 600 m) of the permafrost is confined to the Taimyr shelf. Based on the results of the analysis of our model, drilling and seismic data, the southwestern shelf of the Kara Sea has insular or sporadic permafrost. In the northeastern part, the nature of the permafrost is also discontinuous, despite the greater thickness of the frozen strata. For the first time, accumulations of cryogenic gas hydrates on the Taimyr shelf have been characterized. The latest drilling data, seismic data reinterpretation, and numerical modeling have shown that the gas hydrate reservoir is confined to unconformably occurring Silurian–Devonian and underlying Triassic–Jurassic strata. The thickness of the gas hydrate reservoir varies from 800 to 1100 m. Based on the interpretation of CDP data and their comparison with model calculations, frozen deposits, and sub-permafrost traps of stratigraphic, anticline and anticline-stratigraphic types were identified for the first time. These pioneering studies allowed us to characterize the thickness and morphology of the gas hydrate reservoir, give a preliminary seismostratigraphic reference, and identify potentially gas hydrate-bearing structures. Due to the favorable thermobaric and permafrost-geothermal conditions, most of the identified traps may turn out to be sub-permafrost accumulations of gas hydrates. In total, at least five potential accumulations of gas hydrates were discovered, confined to structural depressions; the Uedineniya Trough and its side included the Egiazarov Step and North Mikhailovskaya Depression.</p>","PeriodicalId":55097,"journal":{"name":"Geotectonics","volume":"37 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Geological Characteristics of a Subpermafrost Gas Hydrate Reservoir on the Taimyr Shelf of the Kara Sea (Eastern Arctic)\",\"authors\":\"T. V. Matveeva, A. O. Chazov, Yu. Yu. Smirnov\",\"doi\":\"10.1134/s0016852123070099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>—</h3><p>The conditions for the formation of gas hydrates associated with subsea permafrost in the Kara Sea have been predicted based on numerical modeling. The forecast of the distribution of the relic submarine permafrost and related methane hydrate stability zone is given on the basis of solving the equation of thermal conductivity. According to modeling data, an extensive thermobaric relic submarine permafrost zone is predicted within the Kara Sea shelf. The greatest thickness (up to 600 m) of the permafrost is confined to the Taimyr shelf. Based on the results of the analysis of our model, drilling and seismic data, the southwestern shelf of the Kara Sea has insular or sporadic permafrost. In the northeastern part, the nature of the permafrost is also discontinuous, despite the greater thickness of the frozen strata. For the first time, accumulations of cryogenic gas hydrates on the Taimyr shelf have been characterized. The latest drilling data, seismic data reinterpretation, and numerical modeling have shown that the gas hydrate reservoir is confined to unconformably occurring Silurian–Devonian and underlying Triassic–Jurassic strata. The thickness of the gas hydrate reservoir varies from 800 to 1100 m. Based on the interpretation of CDP data and their comparison with model calculations, frozen deposits, and sub-permafrost traps of stratigraphic, anticline and anticline-stratigraphic types were identified for the first time. These pioneering studies allowed us to characterize the thickness and morphology of the gas hydrate reservoir, give a preliminary seismostratigraphic reference, and identify potentially gas hydrate-bearing structures. Due to the favorable thermobaric and permafrost-geothermal conditions, most of the identified traps may turn out to be sub-permafrost accumulations of gas hydrates. In total, at least five potential accumulations of gas hydrates were discovered, confined to structural depressions; the Uedineniya Trough and its side included the Egiazarov Step and North Mikhailovskaya Depression.</p>\",\"PeriodicalId\":55097,\"journal\":{\"name\":\"Geotectonics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotectonics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0016852123070099\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0016852123070099","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Geological Characteristics of a Subpermafrost Gas Hydrate Reservoir on the Taimyr Shelf of the Kara Sea (Eastern Arctic)
Abstract—
The conditions for the formation of gas hydrates associated with subsea permafrost in the Kara Sea have been predicted based on numerical modeling. The forecast of the distribution of the relic submarine permafrost and related methane hydrate stability zone is given on the basis of solving the equation of thermal conductivity. According to modeling data, an extensive thermobaric relic submarine permafrost zone is predicted within the Kara Sea shelf. The greatest thickness (up to 600 m) of the permafrost is confined to the Taimyr shelf. Based on the results of the analysis of our model, drilling and seismic data, the southwestern shelf of the Kara Sea has insular or sporadic permafrost. In the northeastern part, the nature of the permafrost is also discontinuous, despite the greater thickness of the frozen strata. For the first time, accumulations of cryogenic gas hydrates on the Taimyr shelf have been characterized. The latest drilling data, seismic data reinterpretation, and numerical modeling have shown that the gas hydrate reservoir is confined to unconformably occurring Silurian–Devonian and underlying Triassic–Jurassic strata. The thickness of the gas hydrate reservoir varies from 800 to 1100 m. Based on the interpretation of CDP data and their comparison with model calculations, frozen deposits, and sub-permafrost traps of stratigraphic, anticline and anticline-stratigraphic types were identified for the first time. These pioneering studies allowed us to characterize the thickness and morphology of the gas hydrate reservoir, give a preliminary seismostratigraphic reference, and identify potentially gas hydrate-bearing structures. Due to the favorable thermobaric and permafrost-geothermal conditions, most of the identified traps may turn out to be sub-permafrost accumulations of gas hydrates. In total, at least five potential accumulations of gas hydrates were discovered, confined to structural depressions; the Uedineniya Trough and its side included the Egiazarov Step and North Mikhailovskaya Depression.
期刊介绍:
Geotectonics publishes articles on general and regional tectonics, structural geology, geodynamics, and experimental tectonics and considers the relation of tectonics to the deep structure of the earth, magmatism, metamorphism, and mineral resources.