{"title":"用拓扑指数键合烷烃属性:统计干预","authors":"Nadar Jenita Mary Masilamani Raja, A. Anuradha","doi":"10.1007/s10910-024-01584-x","DOIUrl":null,"url":null,"abstract":"<div><p>This research delves into a comprehensive investigation of a specific group of alkanes, with the primary objective of establishing meaningful associations between their inherent physical attributes and a set of graphical parameters ranging from topological indices to their associated graphical entropies. Though there are countless techniques to relate molecular structure and physical properties of chemical compounds, the pursuit has often been pricey and arduous. With a view to curb the expense and intense labour, this work focuses on attaining some of these properties using graphical interpretations and statistical interventions. Driven by this objective, we compute Sombor index, a recently developed topological tool and some of its variants for all structural isomers of alkanes with carbon range four to nine. Furthermore, our study employs multiple regression analysis to explore their connections with some physical attributes of alkanes while concurrently addressing the challenge posed by multicollinearity. We have adopted the technique of robust regression to scale down the impact of outliers in the dataset, while generating regression models. Further, the established results are justified with a 10-fold cross validation process and a comparison with the results obtained from different topological indices. The results of this research contribute a valuable insight to the fields of chemical informatics and structural analysis, offering an enhanced comprehension of the interplay between molecular structure and physical attributes within alkanes.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 10","pages":"2889 - 2911"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bonding alkane attributes with topological indices: a statistical intervention\",\"authors\":\"Nadar Jenita Mary Masilamani Raja, A. Anuradha\",\"doi\":\"10.1007/s10910-024-01584-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research delves into a comprehensive investigation of a specific group of alkanes, with the primary objective of establishing meaningful associations between their inherent physical attributes and a set of graphical parameters ranging from topological indices to their associated graphical entropies. Though there are countless techniques to relate molecular structure and physical properties of chemical compounds, the pursuit has often been pricey and arduous. With a view to curb the expense and intense labour, this work focuses on attaining some of these properties using graphical interpretations and statistical interventions. Driven by this objective, we compute Sombor index, a recently developed topological tool and some of its variants for all structural isomers of alkanes with carbon range four to nine. Furthermore, our study employs multiple regression analysis to explore their connections with some physical attributes of alkanes while concurrently addressing the challenge posed by multicollinearity. We have adopted the technique of robust regression to scale down the impact of outliers in the dataset, while generating regression models. Further, the established results are justified with a 10-fold cross validation process and a comparison with the results obtained from different topological indices. The results of this research contribute a valuable insight to the fields of chemical informatics and structural analysis, offering an enhanced comprehension of the interplay between molecular structure and physical attributes within alkanes.</p></div>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":\"62 10\",\"pages\":\"2889 - 2911\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10910-024-01584-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01584-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bonding alkane attributes with topological indices: a statistical intervention
This research delves into a comprehensive investigation of a specific group of alkanes, with the primary objective of establishing meaningful associations between their inherent physical attributes and a set of graphical parameters ranging from topological indices to their associated graphical entropies. Though there are countless techniques to relate molecular structure and physical properties of chemical compounds, the pursuit has often been pricey and arduous. With a view to curb the expense and intense labour, this work focuses on attaining some of these properties using graphical interpretations and statistical interventions. Driven by this objective, we compute Sombor index, a recently developed topological tool and some of its variants for all structural isomers of alkanes with carbon range four to nine. Furthermore, our study employs multiple regression analysis to explore their connections with some physical attributes of alkanes while concurrently addressing the challenge posed by multicollinearity. We have adopted the technique of robust regression to scale down the impact of outliers in the dataset, while generating regression models. Further, the established results are justified with a 10-fold cross validation process and a comparison with the results obtained from different topological indices. The results of this research contribute a valuable insight to the fields of chemical informatics and structural analysis, offering an enhanced comprehension of the interplay between molecular structure and physical attributes within alkanes.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.