{"title":"TPPU_DSF:利用 DSF 数据计算热力学参数的网络应用程序","authors":"","doi":"10.1016/j.jmb.2024.168519","DOIUrl":null,"url":null,"abstract":"<div><p>Here we present TPPU_DSF (<span><span>https://maciasnmr.net/tppu_dsf/</span><svg><path></path></svg></span>). This is a free and open-source web application that opens, converts, fits, and calculates the thermodynamic parameters of protein unfolding from standard differential scanning fluorimetry (DSF) data in an automated manner. The software has several applications. In the context of screening compound libraries for protein binders, obtaining thermodynamic parameters provides a more robust approach to detecting hits than the changes in the melting temperature (T<sub>m</sub>) alone, thereby helping to increase the number of positive hits in screening campaigns. Moreover, changes in ΔG<sub>u</sub><sup>o</sup> indicate protein response to binding at lower compound concentrations than those in the T<sub>m</sub>, thereby reducing the costs associated with the amounts of protein and compounds required for the assays. Also, by adding thermodynamic information to the T<sub>m</sub> comparison, the software can contribute to the optimization of protein constructs and buffer conditions, a common practice before structural and functional projects.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001062/pdfft?md5=cf58214544ee4ccc6fb33b70056879e3&pid=1-s2.0-S0022283624001062-main.pdf","citationCount":"0","resultStr":"{\"title\":\"TPPU_DSF: A Web Application to Calculate Thermodynamic Parameters Using DSF Data\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here we present TPPU_DSF (<span><span>https://maciasnmr.net/tppu_dsf/</span><svg><path></path></svg></span>). This is a free and open-source web application that opens, converts, fits, and calculates the thermodynamic parameters of protein unfolding from standard differential scanning fluorimetry (DSF) data in an automated manner. The software has several applications. In the context of screening compound libraries for protein binders, obtaining thermodynamic parameters provides a more robust approach to detecting hits than the changes in the melting temperature (T<sub>m</sub>) alone, thereby helping to increase the number of positive hits in screening campaigns. Moreover, changes in ΔG<sub>u</sub><sup>o</sup> indicate protein response to binding at lower compound concentrations than those in the T<sub>m</sub>, thereby reducing the costs associated with the amounts of protein and compounds required for the assays. Also, by adding thermodynamic information to the T<sub>m</sub> comparison, the software can contribute to the optimization of protein constructs and buffer conditions, a common practice before structural and functional projects.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001062/pdfft?md5=cf58214544ee4ccc6fb33b70056879e3&pid=1-s2.0-S0022283624001062-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001062\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001062","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
TPPU_DSF: A Web Application to Calculate Thermodynamic Parameters Using DSF Data
Here we present TPPU_DSF (https://maciasnmr.net/tppu_dsf/). This is a free and open-source web application that opens, converts, fits, and calculates the thermodynamic parameters of protein unfolding from standard differential scanning fluorimetry (DSF) data in an automated manner. The software has several applications. In the context of screening compound libraries for protein binders, obtaining thermodynamic parameters provides a more robust approach to detecting hits than the changes in the melting temperature (Tm) alone, thereby helping to increase the number of positive hits in screening campaigns. Moreover, changes in ΔGuo indicate protein response to binding at lower compound concentrations than those in the Tm, thereby reducing the costs associated with the amounts of protein and compounds required for the assays. Also, by adding thermodynamic information to the Tm comparison, the software can contribute to the optimization of protein constructs and buffer conditions, a common practice before structural and functional projects.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.