{"title":"通过混合优化策略加强高固玉米芯水解作用","authors":"Yafei Zhu, Kanghong Wang, Chaozhong Xu, Jia Ouyang, Xiaoli Gu","doi":"10.1007/s12155-024-10740-9","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance cellulose hydrolysis under high solid loadings, increasing the mixing intensity is often necessary, but this can lead to heightened product inhibition. In this work, the effect of mixing on high-solid cellulose hydrolysis was investigated. Through response surface optimization experiments, the optimal mixing intensities for 15%, 25%, and 35% (w/v) cellulose hydrolysis were obtained under different levels of product inhibition. A combined mixing optimization strategy was developed for different solid concentrations, aiming to enhance both the glucose yield and the conversion rate of microcrystalline cellulose and corn cobs. After optimization, the hydrolysis of microcrystalline cellulose resulted in glucose concentrations of 85 g/L, 130 g/L, and 167 g/L, corresponding to maximal conversion enhancements of 23%, 13%, and 8.6%, respectively. Similarly, the hydrolysis of corn cobs achieved glucose concentrations of 81 g/L, 124.6 g/L, and 140 g/L, with maximal conversion improvements of 4%, 5%, and 13%. These results indicate that the optimized strategy can effectively improve the conversion rate of high-solid enzymatic hydrolysis of cellulose.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1460 - 1468"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing High-Solid Corn Cob Hydrolysis via Mixing Optimization Strategies\",\"authors\":\"Yafei Zhu, Kanghong Wang, Chaozhong Xu, Jia Ouyang, Xiaoli Gu\",\"doi\":\"10.1007/s12155-024-10740-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To enhance cellulose hydrolysis under high solid loadings, increasing the mixing intensity is often necessary, but this can lead to heightened product inhibition. In this work, the effect of mixing on high-solid cellulose hydrolysis was investigated. Through response surface optimization experiments, the optimal mixing intensities for 15%, 25%, and 35% (w/v) cellulose hydrolysis were obtained under different levels of product inhibition. A combined mixing optimization strategy was developed for different solid concentrations, aiming to enhance both the glucose yield and the conversion rate of microcrystalline cellulose and corn cobs. After optimization, the hydrolysis of microcrystalline cellulose resulted in glucose concentrations of 85 g/L, 130 g/L, and 167 g/L, corresponding to maximal conversion enhancements of 23%, 13%, and 8.6%, respectively. Similarly, the hydrolysis of corn cobs achieved glucose concentrations of 81 g/L, 124.6 g/L, and 140 g/L, with maximal conversion improvements of 4%, 5%, and 13%. These results indicate that the optimized strategy can effectively improve the conversion rate of high-solid enzymatic hydrolysis of cellulose.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"17 3\",\"pages\":\"1460 - 1468\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-024-10740-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10740-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Enhancing High-Solid Corn Cob Hydrolysis via Mixing Optimization Strategies
To enhance cellulose hydrolysis under high solid loadings, increasing the mixing intensity is often necessary, but this can lead to heightened product inhibition. In this work, the effect of mixing on high-solid cellulose hydrolysis was investigated. Through response surface optimization experiments, the optimal mixing intensities for 15%, 25%, and 35% (w/v) cellulose hydrolysis were obtained under different levels of product inhibition. A combined mixing optimization strategy was developed for different solid concentrations, aiming to enhance both the glucose yield and the conversion rate of microcrystalline cellulose and corn cobs. After optimization, the hydrolysis of microcrystalline cellulose resulted in glucose concentrations of 85 g/L, 130 g/L, and 167 g/L, corresponding to maximal conversion enhancements of 23%, 13%, and 8.6%, respectively. Similarly, the hydrolysis of corn cobs achieved glucose concentrations of 81 g/L, 124.6 g/L, and 140 g/L, with maximal conversion improvements of 4%, 5%, and 13%. These results indicate that the optimized strategy can effectively improve the conversion rate of high-solid enzymatic hydrolysis of cellulose.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.