通过混合优化策略加强高固玉米芯水解作用

IF 3.1 3区 工程技术 Q3 ENERGY & FUELS BioEnergy Research Pub Date : 2024-03-11 DOI:10.1007/s12155-024-10740-9
Yafei Zhu, Kanghong Wang, Chaozhong Xu, Jia Ouyang, Xiaoli Gu
{"title":"通过混合优化策略加强高固玉米芯水解作用","authors":"Yafei Zhu,&nbsp;Kanghong Wang,&nbsp;Chaozhong Xu,&nbsp;Jia Ouyang,&nbsp;Xiaoli Gu","doi":"10.1007/s12155-024-10740-9","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance cellulose hydrolysis under high solid loadings, increasing the mixing intensity is often necessary, but this can lead to heightened product inhibition. In this work, the effect of mixing on high-solid cellulose hydrolysis was investigated. Through response surface optimization experiments, the optimal mixing intensities for 15%, 25%, and 35% (w/v) cellulose hydrolysis were obtained under different levels of product inhibition. A combined mixing optimization strategy was developed for different solid concentrations, aiming to enhance both the glucose yield and the conversion rate of microcrystalline cellulose and corn cobs. After optimization, the hydrolysis of microcrystalline cellulose resulted in glucose concentrations of 85 g/L, 130 g/L, and 167 g/L, corresponding to maximal conversion enhancements of 23%, 13%, and 8.6%, respectively. Similarly, the hydrolysis of corn cobs achieved glucose concentrations of 81 g/L, 124.6 g/L, and 140 g/L, with maximal conversion improvements of 4%, 5%, and 13%. These results indicate that the optimized strategy can effectively improve the conversion rate of high-solid enzymatic hydrolysis of cellulose.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1460 - 1468"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing High-Solid Corn Cob Hydrolysis via Mixing Optimization Strategies\",\"authors\":\"Yafei Zhu,&nbsp;Kanghong Wang,&nbsp;Chaozhong Xu,&nbsp;Jia Ouyang,&nbsp;Xiaoli Gu\",\"doi\":\"10.1007/s12155-024-10740-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To enhance cellulose hydrolysis under high solid loadings, increasing the mixing intensity is often necessary, but this can lead to heightened product inhibition. In this work, the effect of mixing on high-solid cellulose hydrolysis was investigated. Through response surface optimization experiments, the optimal mixing intensities for 15%, 25%, and 35% (w/v) cellulose hydrolysis were obtained under different levels of product inhibition. A combined mixing optimization strategy was developed for different solid concentrations, aiming to enhance both the glucose yield and the conversion rate of microcrystalline cellulose and corn cobs. After optimization, the hydrolysis of microcrystalline cellulose resulted in glucose concentrations of 85 g/L, 130 g/L, and 167 g/L, corresponding to maximal conversion enhancements of 23%, 13%, and 8.6%, respectively. Similarly, the hydrolysis of corn cobs achieved glucose concentrations of 81 g/L, 124.6 g/L, and 140 g/L, with maximal conversion improvements of 4%, 5%, and 13%. These results indicate that the optimized strategy can effectively improve the conversion rate of high-solid enzymatic hydrolysis of cellulose.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"17 3\",\"pages\":\"1460 - 1468\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-024-10740-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10740-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高高固体负荷下的纤维素水解效果,通常需要增加混合强度,但这会导致产品抑制作用增强。在这项工作中,研究了混合对高固体纤维素水解的影响。通过响应面优化实验,得出了在不同的产品抑制水平下,15%、25% 和 35% (w/v)纤维素水解的最佳混合强度。针对不同的固体浓度,开发了一种组合混合优化策略,旨在同时提高葡萄糖产量和微晶纤维素与玉米芯的转化率。优化后,微晶纤维素水解产生的葡萄糖浓度分别为 85 克/升、130 克/升和 167 克/升,最大转化率分别提高了 23%、13% 和 8.6%。同样,玉米芯水解产生的葡萄糖浓度分别为 81 克/升、124.6 克/升和 140 克/升,最大转化率分别提高了 4%、5% 和 13%。这些结果表明,优化策略可有效提高纤维素高固酶水解的转化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing High-Solid Corn Cob Hydrolysis via Mixing Optimization Strategies

To enhance cellulose hydrolysis under high solid loadings, increasing the mixing intensity is often necessary, but this can lead to heightened product inhibition. In this work, the effect of mixing on high-solid cellulose hydrolysis was investigated. Through response surface optimization experiments, the optimal mixing intensities for 15%, 25%, and 35% (w/v) cellulose hydrolysis were obtained under different levels of product inhibition. A combined mixing optimization strategy was developed for different solid concentrations, aiming to enhance both the glucose yield and the conversion rate of microcrystalline cellulose and corn cobs. After optimization, the hydrolysis of microcrystalline cellulose resulted in glucose concentrations of 85 g/L, 130 g/L, and 167 g/L, corresponding to maximal conversion enhancements of 23%, 13%, and 8.6%, respectively. Similarly, the hydrolysis of corn cobs achieved glucose concentrations of 81 g/L, 124.6 g/L, and 140 g/L, with maximal conversion improvements of 4%, 5%, and 13%. These results indicate that the optimized strategy can effectively improve the conversion rate of high-solid enzymatic hydrolysis of cellulose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
期刊最新文献
Enhanced Carbon Dioxide Biofixation and Lipid Production of Chlorella sp. Using Alkali Absorber and Strategic Carbon Dioxide Supply Third-Generation L-Lactic Acid Biorefinery Approaches: Exploring the Viability of Macroalgae Detritus Microalga Growth-Promoting Bacteria as Strategy to Improve CO2 Removal from Biogas Micro-Raman Spectroscopy Explains the Population-Scale Heterogeneity in Lipid Profile in Chlamydomonas reinhardtii Cultivated Under Single-Stage and Two-Stage Salt Stress Exergy Analysis of Integrated Methanol and Dimethyl-Ether Co-production Towards Net Zero Waste Emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1