{"title":"新型 N-苄基吡啶-2-酮衍生物对东莨菪碱诱发的小鼠认知障碍的记忆改善作用。","authors":"Swati Pant, Mohan Gupta, Tulika Anthwal, Monika Chauhan, Sumitra Nain","doi":"10.1186/s42826-023-00187-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD), the most common form of progressive dementia in the elderly, is a chronic neurological disorder that decreases cognitive ability. Although the underlying cause of AD is yet unknown, oxidative stress and brain acetylcholine shortage are the key pathogenic causes.</p><p><strong>Results: </strong>The current study shows that these derivatives have the potential to improve memory in mice by inhibiting scopolamine-induced acetylcholinesterase activity, oxidative and nitrosative stress, and improving locomotor activity and muscle grip strength in the rota rod test. When compared to the illness control, the memory-enhancing potential of novel N-benzyl pyridine-2-one derivatives was highly significant (P < 0.0001).</p><p><strong>Conclusions: </strong>The observed memory ameliorating effect of novel N-benzyl pyridine-2-one makes them as a a good choice for treatment of individuals with cognitive impairment.</p>","PeriodicalId":17993,"journal":{"name":"Laboratory Animal Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926586/pdf/","citationCount":"0","resultStr":"{\"title\":\"The memory ameliorating effects of novel N-benzyl pyridine-2-one derivatives on scopolamine-induced cognitive deficits in mice.\",\"authors\":\"Swati Pant, Mohan Gupta, Tulika Anthwal, Monika Chauhan, Sumitra Nain\",\"doi\":\"10.1186/s42826-023-00187-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alzheimer's disease (AD), the most common form of progressive dementia in the elderly, is a chronic neurological disorder that decreases cognitive ability. Although the underlying cause of AD is yet unknown, oxidative stress and brain acetylcholine shortage are the key pathogenic causes.</p><p><strong>Results: </strong>The current study shows that these derivatives have the potential to improve memory in mice by inhibiting scopolamine-induced acetylcholinesterase activity, oxidative and nitrosative stress, and improving locomotor activity and muscle grip strength in the rota rod test. When compared to the illness control, the memory-enhancing potential of novel N-benzyl pyridine-2-one derivatives was highly significant (P < 0.0001).</p><p><strong>Conclusions: </strong>The observed memory ameliorating effect of novel N-benzyl pyridine-2-one makes them as a a good choice for treatment of individuals with cognitive impairment.</p>\",\"PeriodicalId\":17993,\"journal\":{\"name\":\"Laboratory Animal Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory Animal Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42826-023-00187-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Animal Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42826-023-00187-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The memory ameliorating effects of novel N-benzyl pyridine-2-one derivatives on scopolamine-induced cognitive deficits in mice.
Background: Alzheimer's disease (AD), the most common form of progressive dementia in the elderly, is a chronic neurological disorder that decreases cognitive ability. Although the underlying cause of AD is yet unknown, oxidative stress and brain acetylcholine shortage are the key pathogenic causes.
Results: The current study shows that these derivatives have the potential to improve memory in mice by inhibiting scopolamine-induced acetylcholinesterase activity, oxidative and nitrosative stress, and improving locomotor activity and muscle grip strength in the rota rod test. When compared to the illness control, the memory-enhancing potential of novel N-benzyl pyridine-2-one derivatives was highly significant (P < 0.0001).
Conclusions: The observed memory ameliorating effect of novel N-benzyl pyridine-2-one makes them as a a good choice for treatment of individuals with cognitive impairment.