SubtlePET™ 人工智能去噪方法在正电子发射断层扫描(PET)中的临床常规应用

IF 2.3 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Clinical and Translational Imaging Pub Date : 2024-03-11 DOI:10.1007/s40336-024-00625-4
Marco De Summa, Maria Rosaria Ruggiero, Sandro Spinosa, Giulio Iachetti, Susanna Esposito, Salvatore Annunziata, Daniele Antonio Pizzuto
{"title":"SubtlePET™ 人工智能去噪方法在正电子发射断层扫描(PET)中的临床常规应用","authors":"Marco De Summa, Maria Rosaria Ruggiero, Sandro Spinosa, Giulio Iachetti, Susanna Esposito, Salvatore Annunziata, Daniele Antonio Pizzuto","doi":"10.1007/s40336-024-00625-4","DOIUrl":null,"url":null,"abstract":"<p>Positron emission tomography (PET) plays an important role in the diagnosis and surveillance of neoplastic diseases. PET images may show higher noise levels than other imaging modalities, especially in a dose- or time-saving approach. Artificial Intelligence techniques can improve the signal-to-noise ratio in PET image reconstruction. Deep learning approaches have made significant advances in comprehensive data retrieval and de-noising. Artificial Intelligence de-noising in PET is a very promising approach that could allow shorter scan times or lower radiopharmaceutical dose administration. We reviewed studies about the de-noising AI-driven PET images, i.e., by SubtlePET™ AI tool, according to the following items: (1) retrieval of complete PET data acquired with reduced scan time; (2) reconstruction of PET images with low-count statistics by reducing radiopharmaceutical doses; (3) impact of artificial intelligence-based de-noising on PET radiomics. We evaluated their implementability in PET image reconstruction to increase the signal-to-noise ratio and image definition. This approach seems promising to positively impact patient healthcare—especially in pediatric patients—and overall diagnostic procedures reducing the cost of radiopharmaceuticals and increasing productivity and efficiency.</p>","PeriodicalId":48600,"journal":{"name":"Clinical and Translational Imaging","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising approaches by SubtlePET™ artificial intelligence in positron emission tomography (PET) for clinical routine application\",\"authors\":\"Marco De Summa, Maria Rosaria Ruggiero, Sandro Spinosa, Giulio Iachetti, Susanna Esposito, Salvatore Annunziata, Daniele Antonio Pizzuto\",\"doi\":\"10.1007/s40336-024-00625-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Positron emission tomography (PET) plays an important role in the diagnosis and surveillance of neoplastic diseases. PET images may show higher noise levels than other imaging modalities, especially in a dose- or time-saving approach. Artificial Intelligence techniques can improve the signal-to-noise ratio in PET image reconstruction. Deep learning approaches have made significant advances in comprehensive data retrieval and de-noising. Artificial Intelligence de-noising in PET is a very promising approach that could allow shorter scan times or lower radiopharmaceutical dose administration. We reviewed studies about the de-noising AI-driven PET images, i.e., by SubtlePET™ AI tool, according to the following items: (1) retrieval of complete PET data acquired with reduced scan time; (2) reconstruction of PET images with low-count statistics by reducing radiopharmaceutical doses; (3) impact of artificial intelligence-based de-noising on PET radiomics. We evaluated their implementability in PET image reconstruction to increase the signal-to-noise ratio and image definition. This approach seems promising to positively impact patient healthcare—especially in pediatric patients—and overall diagnostic procedures reducing the cost of radiopharmaceuticals and increasing productivity and efficiency.</p>\",\"PeriodicalId\":48600,\"journal\":{\"name\":\"Clinical and Translational Imaging\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40336-024-00625-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40336-024-00625-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射断层扫描(PET)在诊断和监测肿瘤性疾病方面发挥着重要作用。与其他成像方式相比,PET 图像可能会显示较高的噪声水平,尤其是在节省剂量或时间的情况下。人工智能技术可以提高 PET 图像重建的信噪比。深度学习方法在综合数据检索和去噪方面取得了重大进展。PET 中的人工智能去噪是一种非常有前景的方法,可以缩短扫描时间或降低放射性药物剂量。我们根据以下项目回顾了有关人工智能驱动的 PET 图像去噪的研究,即 SubtlePET™ 人工智能工具:(1) 以更短的扫描时间检索获取的完整 PET 数据;(2) 通过减少放射性药物剂量重建具有低计数统计量的 PET 图像;(3) 基于人工智能的去噪对 PET 放射组学的影响。我们评估了它们在 PET 图像重建中的可实施性,以提高信噪比和图像清晰度。这种方法有望对患者医疗保健(尤其是儿科患者)和整个诊断程序产生积极影响,降低放射性药物成本,提高生产率和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising approaches by SubtlePET™ artificial intelligence in positron emission tomography (PET) for clinical routine application

Positron emission tomography (PET) plays an important role in the diagnosis and surveillance of neoplastic diseases. PET images may show higher noise levels than other imaging modalities, especially in a dose- or time-saving approach. Artificial Intelligence techniques can improve the signal-to-noise ratio in PET image reconstruction. Deep learning approaches have made significant advances in comprehensive data retrieval and de-noising. Artificial Intelligence de-noising in PET is a very promising approach that could allow shorter scan times or lower radiopharmaceutical dose administration. We reviewed studies about the de-noising AI-driven PET images, i.e., by SubtlePET™ AI tool, according to the following items: (1) retrieval of complete PET data acquired with reduced scan time; (2) reconstruction of PET images with low-count statistics by reducing radiopharmaceutical doses; (3) impact of artificial intelligence-based de-noising on PET radiomics. We evaluated their implementability in PET image reconstruction to increase the signal-to-noise ratio and image definition. This approach seems promising to positively impact patient healthcare—especially in pediatric patients—and overall diagnostic procedures reducing the cost of radiopharmaceuticals and increasing productivity and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical and Translational Imaging
Clinical and Translational Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
3.60
自引率
4.80%
发文量
55
期刊介绍: Clinical and Translational Imaging is an international journal that publishes timely, up-to-date summaries on clinical practice and translational research and clinical applications of approved and experimental radiopharmaceuticals for diagnostic and therapeutic purposes. Coverage includes such topics as advanced preclinical evidence in the fields of physics, dosimetry, radiation biology and radiopharmacy with relevance to applications in human subjects. The journal benefits a readership of nuclear medicine practitioners and allied professionals involved in molecular imaging and therapy.
期刊最新文献
PSMA PET in brain metastases: navigating diagnostic challenges– a thorough exploration Comparison of the diagnostic value of 68Ga-FAPI and 18F-FDG PET/CT in breast cancer: a systematic review Correlation of tracer uptake in sentinel lymph nodes as measured on SPECT/CT and during intra-operative gamma tracing with SENSEI: the UZ Leuven experience The diagnosis performance of [18F]FDG PET/CT, MRI, and CT in the diagnosis of mandibular invasion in oral/oropharyngeal carcinoma: a head-to-head comparative meta-analysis Advantages of SiPM-based digital PET/CT technology in nuclear medicine clinical practice: a systematic review—Part 1 oncological setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1