{"title":"在水性电解质中稳定锌阳极的聚合物被动层","authors":"H. Chotard , P.L. Taberna , P. Simon","doi":"10.1016/j.elecom.2024.107697","DOIUrl":null,"url":null,"abstract":"<div><p>Metallic zinc holds promise as a cost-effective and scalable material for secondary energy storage applications. However, its inherent reversibility issues hinder its practical implementation. Among various strategies, interface engineering has emerged as a promising approach to enhance the reversibility of zinc anodes. Herein we introduce an innovative method involving the parallel deposition of poly(acrylic acid) (PAA) and zinc metal, creating a composite layer of polymer and zinc, denoted as Zn-PAA. This unique Zn-PAA layer deposition technique remarkably enhances interfacial behavior, ensuring superior cyclic stability in symmetric cells. Moreover, the Zn-PAA layer reduces polarization effects and effectively mitigates interface alterations during plating and stripping processes resulting in increased interface stability. This study highlights the potential of simultaneous electropolymerisation and zinc deposition as a promising strategy to coat and densify interface on zinc anode with intertangled matrix of zinc and polymer for improving the performance and stability of zinc anodes in batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"162 ","pages":"Article 107697"},"PeriodicalIF":4.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000407/pdfft?md5=91251aca7371fce257deccc26c52a573&pid=1-s2.0-S1388248124000407-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Polymer-based passive layer to stabilize zinc anode in aqueous electrolyte\",\"authors\":\"H. Chotard , P.L. Taberna , P. Simon\",\"doi\":\"10.1016/j.elecom.2024.107697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metallic zinc holds promise as a cost-effective and scalable material for secondary energy storage applications. However, its inherent reversibility issues hinder its practical implementation. Among various strategies, interface engineering has emerged as a promising approach to enhance the reversibility of zinc anodes. Herein we introduce an innovative method involving the parallel deposition of poly(acrylic acid) (PAA) and zinc metal, creating a composite layer of polymer and zinc, denoted as Zn-PAA. This unique Zn-PAA layer deposition technique remarkably enhances interfacial behavior, ensuring superior cyclic stability in symmetric cells. Moreover, the Zn-PAA layer reduces polarization effects and effectively mitigates interface alterations during plating and stripping processes resulting in increased interface stability. This study highlights the potential of simultaneous electropolymerisation and zinc deposition as a promising strategy to coat and densify interface on zinc anode with intertangled matrix of zinc and polymer for improving the performance and stability of zinc anodes in batteries.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"162 \",\"pages\":\"Article 107697\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000407/pdfft?md5=91251aca7371fce257deccc26c52a573&pid=1-s2.0-S1388248124000407-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000407\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000407","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Polymer-based passive layer to stabilize zinc anode in aqueous electrolyte
Metallic zinc holds promise as a cost-effective and scalable material for secondary energy storage applications. However, its inherent reversibility issues hinder its practical implementation. Among various strategies, interface engineering has emerged as a promising approach to enhance the reversibility of zinc anodes. Herein we introduce an innovative method involving the parallel deposition of poly(acrylic acid) (PAA) and zinc metal, creating a composite layer of polymer and zinc, denoted as Zn-PAA. This unique Zn-PAA layer deposition technique remarkably enhances interfacial behavior, ensuring superior cyclic stability in symmetric cells. Moreover, the Zn-PAA layer reduces polarization effects and effectively mitigates interface alterations during plating and stripping processes resulting in increased interface stability. This study highlights the potential of simultaneous electropolymerisation and zinc deposition as a promising strategy to coat and densify interface on zinc anode with intertangled matrix of zinc and polymer for improving the performance and stability of zinc anodes in batteries.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.