{"title":"纳米粘土增韧三元高密度聚乙烯/低密度聚乙烯-g-MA/ABS 共混纳米复合材料的结构韧性和非线性 J 积分断裂韧性","authors":"Mushtaq Albdiry","doi":"10.1177/00219983241240468","DOIUrl":null,"url":null,"abstract":"High-density polyethylene (HDPE) has a higher strength-to-density ratio and stiffness but a low branching degree for the packed linear chains that restrict the ability to bond and resist cracking. This study conducts the role of inserting rigid nanoclay (NC) and soft acrylonitrile butadiene styrene (ABS) on the structural, nonlinear fracture toughness and crack resistance of a ternary HDPE/low-density polyethylene-grafted maleic anhydrite (LDPE-g-MA)/ABS blend. Varying additions of 1, 3, 5, and 7 % NC and 5, 10, 15 wt. % ABS were inserted into neat HDPE and HDPE<jats:sub>90</jats:sub>/LDPE-g-MA<jats:sub>10</jats:sub>. All materials were hand-mixed before feeding into a single screw extruder and directly melt-blended twice to achieve a good dispersion of nanofiller in the matrix. The structural characteristics and the fracture surfaces of NC/HDPE/LDPE-g-MA and NC/HDPE/LDPE-g-MA/ABS were investigated by TEM, XRD, SEM, and FTIR spectra. Tensile strength and the critical dissipated energy (J<jats:sub>Ic</jats:sub>) determined by quasi-static J-integral fracture mechanic revealed a higher absorbing fracture energy of 75 KJ/m<jats:sup>2</jats:sup> for the binary and 85 KJ/m<jats:sup>2</jats:sup> for the ternary nanocomposites. The synergistic percolated role of the NC particles and ABS copolymer in front of the crack tip region hinders crack growth for the presence of micro-void coalescence and massive shear-yielding toughening mechanisms.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"33 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and nonlinear J-integral fracture toughness for nanoclay toughened ternary HDPE/LDPE-g-MA/ABS blend nanocomposites\",\"authors\":\"Mushtaq Albdiry\",\"doi\":\"10.1177/00219983241240468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-density polyethylene (HDPE) has a higher strength-to-density ratio and stiffness but a low branching degree for the packed linear chains that restrict the ability to bond and resist cracking. This study conducts the role of inserting rigid nanoclay (NC) and soft acrylonitrile butadiene styrene (ABS) on the structural, nonlinear fracture toughness and crack resistance of a ternary HDPE/low-density polyethylene-grafted maleic anhydrite (LDPE-g-MA)/ABS blend. Varying additions of 1, 3, 5, and 7 % NC and 5, 10, 15 wt. % ABS were inserted into neat HDPE and HDPE<jats:sub>90</jats:sub>/LDPE-g-MA<jats:sub>10</jats:sub>. All materials were hand-mixed before feeding into a single screw extruder and directly melt-blended twice to achieve a good dispersion of nanofiller in the matrix. The structural characteristics and the fracture surfaces of NC/HDPE/LDPE-g-MA and NC/HDPE/LDPE-g-MA/ABS were investigated by TEM, XRD, SEM, and FTIR spectra. Tensile strength and the critical dissipated energy (J<jats:sub>Ic</jats:sub>) determined by quasi-static J-integral fracture mechanic revealed a higher absorbing fracture energy of 75 KJ/m<jats:sup>2</jats:sup> for the binary and 85 KJ/m<jats:sup>2</jats:sup> for the ternary nanocomposites. The synergistic percolated role of the NC particles and ABS copolymer in front of the crack tip region hinders crack growth for the presence of micro-void coalescence and massive shear-yielding toughening mechanisms.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241240468\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241240468","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Structural and nonlinear J-integral fracture toughness for nanoclay toughened ternary HDPE/LDPE-g-MA/ABS blend nanocomposites
High-density polyethylene (HDPE) has a higher strength-to-density ratio and stiffness but a low branching degree for the packed linear chains that restrict the ability to bond and resist cracking. This study conducts the role of inserting rigid nanoclay (NC) and soft acrylonitrile butadiene styrene (ABS) on the structural, nonlinear fracture toughness and crack resistance of a ternary HDPE/low-density polyethylene-grafted maleic anhydrite (LDPE-g-MA)/ABS blend. Varying additions of 1, 3, 5, and 7 % NC and 5, 10, 15 wt. % ABS were inserted into neat HDPE and HDPE90/LDPE-g-MA10. All materials were hand-mixed before feeding into a single screw extruder and directly melt-blended twice to achieve a good dispersion of nanofiller in the matrix. The structural characteristics and the fracture surfaces of NC/HDPE/LDPE-g-MA and NC/HDPE/LDPE-g-MA/ABS were investigated by TEM, XRD, SEM, and FTIR spectra. Tensile strength and the critical dissipated energy (JIc) determined by quasi-static J-integral fracture mechanic revealed a higher absorbing fracture energy of 75 KJ/m2 for the binary and 85 KJ/m2 for the ternary nanocomposites. The synergistic percolated role of the NC particles and ABS copolymer in front of the crack tip region hinders crack growth for the presence of micro-void coalescence and massive shear-yielding toughening mechanisms.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).