在资源有限的硬件上利用高效边缘人工智能模型进行稳健的心电图异常检测

IF 2.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Translational Research Pub Date : 2024-08-01 Epub Date: 2024-03-12 DOI:10.1007/s12265-024-10504-y
Zhaojing Huang, Luis Fernando Herbozo Contreras, Wing Hang Leung, Leping Yu, Nhan Duy Truong, Armin Nikpour, Omid Kavehei
{"title":"在资源有限的硬件上利用高效边缘人工智能模型进行稳健的心电图异常检测","authors":"Zhaojing Huang, Luis Fernando Herbozo Contreras, Wing Hang Leung, Leping Yu, Nhan Duy Truong, Armin Nikpour, Omid Kavehei","doi":"10.1007/s12265-024-10504-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces two models, ConvLSTM2D-liquid time-constant network (CLTC) and ConvLSTM2D-closed-form continuous-time neural network (CCfC), designed for abnormality identification using electrocardiogram (ECG) data. Trained on the Telehealth Network of Minas Gerais (TNMG) subset dataset, both models were evaluated for their performance, generalizability capacity, and resilience. They demonstrated comparable results in terms of F1 scores and AUROC values. The CCfC model achieved slightly higher accuracy, while the CLTC model showed better handling of empty channels. Remarkably, the models were successfully deployed on a resource-constrained microcontroller, proving their suitability for edge device applications. Generalization capabilities were confirmed through the evaluation on the China Physiological Signal Challenge 2018 (CPSC) dataset. The models' efficient resource utilization, occupying 70.6% of memory and 9.4% of flash memory, makes them promising candidates for real-world healthcare applications. Overall, this research advances abnormality identification in ECG data, contributing to the progress of AI in healthcare.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"879-892"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371854/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Edge-AI Models for Robust ECG Abnormality Detection on Resource-Constrained Hardware.\",\"authors\":\"Zhaojing Huang, Luis Fernando Herbozo Contreras, Wing Hang Leung, Leping Yu, Nhan Duy Truong, Armin Nikpour, Omid Kavehei\",\"doi\":\"10.1007/s12265-024-10504-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces two models, ConvLSTM2D-liquid time-constant network (CLTC) and ConvLSTM2D-closed-form continuous-time neural network (CCfC), designed for abnormality identification using electrocardiogram (ECG) data. Trained on the Telehealth Network of Minas Gerais (TNMG) subset dataset, both models were evaluated for their performance, generalizability capacity, and resilience. They demonstrated comparable results in terms of F1 scores and AUROC values. The CCfC model achieved slightly higher accuracy, while the CLTC model showed better handling of empty channels. Remarkably, the models were successfully deployed on a resource-constrained microcontroller, proving their suitability for edge device applications. Generalization capabilities were confirmed through the evaluation on the China Physiological Signal Challenge 2018 (CPSC) dataset. The models' efficient resource utilization, occupying 70.6% of memory and 9.4% of flash memory, makes them promising candidates for real-world healthcare applications. Overall, this research advances abnormality identification in ECG data, contributing to the progress of AI in healthcare.</p>\",\"PeriodicalId\":15224,\"journal\":{\"name\":\"Journal of Cardiovascular Translational Research\",\"volume\":\" \",\"pages\":\"879-892\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371854/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Translational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12265-024-10504-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12265-024-10504-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了 ConvLSTM2D-液态时间恒定网络(CLTC)和 ConvLSTM2D-闭式连续时间神经网络(CCfC)这两个模型,它们是为使用心电图(ECG)数据进行异常识别而设计的。在米纳斯吉拉斯州远程医疗网络(TNMG)子集数据集上对这两个模型进行了训练,评估了它们的性能、泛化能力和复原能力。在 F1 分数和 AUROC 值方面,它们的结果相当。CCfC 模型的准确率略高,而 CLTC 模型则能更好地处理空信道。值得注意的是,这些模型成功地部署在了资源受限的微控制器上,证明了它们适用于边缘设备应用。通过对 2018 年中国生理信号挑战赛(CPSC)数据集的评估,证实了模型的泛化能力。模型的资源利用率很高,只占用 70.6% 的内存和 9.4% 的闪存,因此很有希望应用于现实世界的医疗保健应用。总之,这项研究推进了心电图数据中的异常识别,为人工智能在医疗领域的应用做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Edge-AI Models for Robust ECG Abnormality Detection on Resource-Constrained Hardware.

This study introduces two models, ConvLSTM2D-liquid time-constant network (CLTC) and ConvLSTM2D-closed-form continuous-time neural network (CCfC), designed for abnormality identification using electrocardiogram (ECG) data. Trained on the Telehealth Network of Minas Gerais (TNMG) subset dataset, both models were evaluated for their performance, generalizability capacity, and resilience. They demonstrated comparable results in terms of F1 scores and AUROC values. The CCfC model achieved slightly higher accuracy, while the CLTC model showed better handling of empty channels. Remarkably, the models were successfully deployed on a resource-constrained microcontroller, proving their suitability for edge device applications. Generalization capabilities were confirmed through the evaluation on the China Physiological Signal Challenge 2018 (CPSC) dataset. The models' efficient resource utilization, occupying 70.6% of memory and 9.4% of flash memory, makes them promising candidates for real-world healthcare applications. Overall, this research advances abnormality identification in ECG data, contributing to the progress of AI in healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cardiovascular Translational Research
Journal of Cardiovascular Translational Research CARDIAC & CARDIOVASCULAR SYSTEMS-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.10
自引率
2.90%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research. JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials. JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.
期刊最新文献
Machine Learning Model for Risk Prediction of Prolonged Intensive Care Unit in Patients Receiving Intra-aortic Balloon Pump Therapy during Coronary Artery Bypass Graft Surgery. NAT10 Modulates Atherosclerosis Progression Mediated by Macrophage Polarization Through Regulating ac4C Modification of TLR9. Associations of Blood Lipid-Related Polygenic Scores, Lifestyle Factors and Their Combined Effects with Risk of Coronary Artery Disease in the UK Biobank Cohort. Prediction of Major Adverse Limb Events in Females with Peripheral Artery Disease using Blood-Based Biomarkers and Clinical Features. Endothelial Cell-Derived Extracellular Vesicles Allow to Differentiate Between Various Endotypes of INOCA: A Multicentre, Prospective, Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1