{"title":"在航空需求建模中适应时空依赖性","authors":"Sudipta Dey Tirtha , Tanmoy Bhowmik , Naveen Eluru","doi":"10.1016/j.jairtraman.2024.102572","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of the current study is to examine monthly air passenger departures at the airport level considering spatial interactions between airports. In this study, we develop a novel spatial grouped generalized ordered probit (SGGOP) model system of monthly air passenger departures at the airport level. Specifically, we estimate two variants of spatial models including spatial lag model and spatial error model. In the presence of repeated demand measures for the airports, we also consider temporal variations of spatial correlation effects among proximally located airports by employing space and time-based weight matrix. The proposed model is estimated using monthly air passenger departures for five years for 369 airports across the US. The proposed spatial model is implemented using composite marginal likelihood (CML) approach that offers a computationally feasible framework. From the estimation results, it is evident that air passenger departures at the airport level are influenced by different factors including MSA specific demographic characteristics, built environment characteristics, airport specific factors, spatial factors, and temporal factors. Moreover, spatial autocorrelation parameter is found to be significant validating our hypothesis of the presence of common unobserved factors associated with the spatial unit of analysis. In this study, we also perform a validation analysis to examine the predictive performance of the proposed spatial models. The results highlight the superiority of spatial error model compared to spatial lag model and the independent model that ignores the spatial interactions. Finally, we undertake an elasticity analysis to quantify the impact of the independent variables.</p></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"116 ","pages":"Article 102572"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accommodating spatio-temporal dependency in airline demand modeling\",\"authors\":\"Sudipta Dey Tirtha , Tanmoy Bhowmik , Naveen Eluru\",\"doi\":\"10.1016/j.jairtraman.2024.102572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of the current study is to examine monthly air passenger departures at the airport level considering spatial interactions between airports. In this study, we develop a novel spatial grouped generalized ordered probit (SGGOP) model system of monthly air passenger departures at the airport level. Specifically, we estimate two variants of spatial models including spatial lag model and spatial error model. In the presence of repeated demand measures for the airports, we also consider temporal variations of spatial correlation effects among proximally located airports by employing space and time-based weight matrix. The proposed model is estimated using monthly air passenger departures for five years for 369 airports across the US. The proposed spatial model is implemented using composite marginal likelihood (CML) approach that offers a computationally feasible framework. From the estimation results, it is evident that air passenger departures at the airport level are influenced by different factors including MSA specific demographic characteristics, built environment characteristics, airport specific factors, spatial factors, and temporal factors. Moreover, spatial autocorrelation parameter is found to be significant validating our hypothesis of the presence of common unobserved factors associated with the spatial unit of analysis. In this study, we also perform a validation analysis to examine the predictive performance of the proposed spatial models. The results highlight the superiority of spatial error model compared to spatial lag model and the independent model that ignores the spatial interactions. Finally, we undertake an elasticity analysis to quantify the impact of the independent variables.</p></div>\",\"PeriodicalId\":14925,\"journal\":{\"name\":\"Journal of Air Transport Management\",\"volume\":\"116 \",\"pages\":\"Article 102572\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Air Transport Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969699724000371\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699724000371","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Accommodating spatio-temporal dependency in airline demand modeling
The objective of the current study is to examine monthly air passenger departures at the airport level considering spatial interactions between airports. In this study, we develop a novel spatial grouped generalized ordered probit (SGGOP) model system of monthly air passenger departures at the airport level. Specifically, we estimate two variants of spatial models including spatial lag model and spatial error model. In the presence of repeated demand measures for the airports, we also consider temporal variations of spatial correlation effects among proximally located airports by employing space and time-based weight matrix. The proposed model is estimated using monthly air passenger departures for five years for 369 airports across the US. The proposed spatial model is implemented using composite marginal likelihood (CML) approach that offers a computationally feasible framework. From the estimation results, it is evident that air passenger departures at the airport level are influenced by different factors including MSA specific demographic characteristics, built environment characteristics, airport specific factors, spatial factors, and temporal factors. Moreover, spatial autocorrelation parameter is found to be significant validating our hypothesis of the presence of common unobserved factors associated with the spatial unit of analysis. In this study, we also perform a validation analysis to examine the predictive performance of the proposed spatial models. The results highlight the superiority of spatial error model compared to spatial lag model and the independent model that ignores the spatial interactions. Finally, we undertake an elasticity analysis to quantify the impact of the independent variables.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability