资源分配、计算复杂性和市场设计

IF 4.3 2区 经济学 Q1 BUSINESS, FINANCE Journal of Behavioral and Experimental Finance Pub Date : 2024-03-11 DOI:10.1016/j.jbef.2024.100906
Peter Bossaerts , Elizabeth Bowman , Felix Fattinger , Harvey Huang , Michelle Lee , Carsten Murawski , Anirudh Suthakar , Shireen Tang , Nitin Yadav
{"title":"资源分配、计算复杂性和市场设计","authors":"Peter Bossaerts ,&nbsp;Elizabeth Bowman ,&nbsp;Felix Fattinger ,&nbsp;Harvey Huang ,&nbsp;Michelle Lee ,&nbsp;Carsten Murawski ,&nbsp;Anirudh Suthakar ,&nbsp;Shireen Tang ,&nbsp;Nitin Yadav","doi":"10.1016/j.jbef.2024.100906","DOIUrl":null,"url":null,"abstract":"<div><p>With three experiments, we study the design of financial markets to help spread knowledge about solutions to the 0-1 Knapsack Problem (KP), a combinatorial resource allocation problem. To solve the KP, substantial cognitive effort is required; random sampling is ineffective and humans rarely resort to it. The theory of computational complexity motivates our experiment designs. Complete markets generate noisy prices and knowledge spreads poorly. Instead, one carefully chosen security per problem instance causes accurate pricing and effective knowledge dissemination. This contrasts with information aggregation experiments. There, values depend on solutions to probabilistic problems, which can be solved by random drawing.</p></div>","PeriodicalId":47026,"journal":{"name":"Journal of Behavioral and Experimental Finance","volume":"42 ","pages":"Article 100906"},"PeriodicalIF":4.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214635024000212/pdfft?md5=1ba78719b59bb416f7b4570373c8fd83&pid=1-s2.0-S2214635024000212-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Resource allocation, computational complexity, and market design\",\"authors\":\"Peter Bossaerts ,&nbsp;Elizabeth Bowman ,&nbsp;Felix Fattinger ,&nbsp;Harvey Huang ,&nbsp;Michelle Lee ,&nbsp;Carsten Murawski ,&nbsp;Anirudh Suthakar ,&nbsp;Shireen Tang ,&nbsp;Nitin Yadav\",\"doi\":\"10.1016/j.jbef.2024.100906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With three experiments, we study the design of financial markets to help spread knowledge about solutions to the 0-1 Knapsack Problem (KP), a combinatorial resource allocation problem. To solve the KP, substantial cognitive effort is required; random sampling is ineffective and humans rarely resort to it. The theory of computational complexity motivates our experiment designs. Complete markets generate noisy prices and knowledge spreads poorly. Instead, one carefully chosen security per problem instance causes accurate pricing and effective knowledge dissemination. This contrasts with information aggregation experiments. There, values depend on solutions to probabilistic problems, which can be solved by random drawing.</p></div>\",\"PeriodicalId\":47026,\"journal\":{\"name\":\"Journal of Behavioral and Experimental Finance\",\"volume\":\"42 \",\"pages\":\"Article 100906\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214635024000212/pdfft?md5=1ba78719b59bb416f7b4570373c8fd83&pid=1-s2.0-S2214635024000212-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Behavioral and Experimental Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214635024000212\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral and Experimental Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214635024000212","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

通过三个实验,我们研究了金融市场的设计,以帮助传播有关 0-1 Knapsack 问题(KP)(一种组合资源分配问题)解决方案的知识。要解决 KP 问题,需要大量的认知努力;随机抽样是无效的,人类很少采用这种方法。计算复杂性理论激发了我们的实验设计。完整的市场会产生嘈杂的价格,知识传播不畅。相反,在每个问题实例中精心选择一种证券,就能获得准确的定价和有效的知识传播。这与信息聚合实验形成鲜明对比。在那里,价值取决于概率问题的解决方案,而这些解决方案可以通过随机抽取来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource allocation, computational complexity, and market design

With three experiments, we study the design of financial markets to help spread knowledge about solutions to the 0-1 Knapsack Problem (KP), a combinatorial resource allocation problem. To solve the KP, substantial cognitive effort is required; random sampling is ineffective and humans rarely resort to it. The theory of computational complexity motivates our experiment designs. Complete markets generate noisy prices and knowledge spreads poorly. Instead, one carefully chosen security per problem instance causes accurate pricing and effective knowledge dissemination. This contrasts with information aggregation experiments. There, values depend on solutions to probabilistic problems, which can be solved by random drawing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.20
自引率
6.10%
发文量
75
审稿时长
69 days
期刊介绍: Behavioral and Experimental Finance represent lenses and approaches through which we can view financial decision-making. The aim of the journal is to publish high quality research in all fields of finance, where such research is carried out with a behavioral perspective and / or is carried out via experimental methods. It is open to but not limited to papers which cover investigations of biases, the role of various neurological markers in financial decision making, national and organizational culture as it impacts financial decision making, sentiment and asset pricing, the design and implementation of experiments to investigate financial decision making and trading, methodological experiments, and natural experiments. Journal of Behavioral and Experimental Finance welcomes full-length and short letter papers in the area of behavioral finance and experimental finance. The focus is on rapid dissemination of high-impact research in these areas.
期刊最新文献
Riding the waves of investor sentiment: Cryptocurrency price and renewable energy volatility during the pandemic-war era Investor horizon, experience, and the disposition effect What makes depression babies different: Expectations or preferences? Luck in high-stakes firm lottery allocation: A natural experimental test of Coasean efficiency and invariance in a prominent sport finance setting Religion and household saving behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1