{"title":"内生芽孢杆菌 S141 在日本莲中揭示植物与丛枝菌根真菌共生的三方协同作用","authors":"","doi":"10.1007/s13199-024-00975-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The crucial roles played by arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) in enhancing plant nutrient uptake and soil quality are widely recognized across various plant species. This study explored the effects and potential of <em>Bacillus velezensis</em> S141 as a plant growth-promoting rhizobacterium on promoting a symbiotic relationship of AMF, <em>Rhizophagus irregularis</em> with <em>Lotus japonicus</em>. <em>B. velezensis</em> S141 inoculation positively influenced fungal growth and development. <em>B. velezensis</em> S141 promoted fungal abundance, such as AM root colonization and spore number. It also boosted plant nutrient uptake, enhancing the nitrogen and phosphorus concentration by 1.65 and 1.51 times, respectively, under tripartite interaction conditions. However, the indole-3-acetic acid (IAA) producing capability of <em>B</em>. <em>velezensis</em> S141, based on the inoculation experiment test of S141 mutants defective in IAA synthesis, was not the key mechanism for promoting this symbiotic interaction. Interestingly, the S141 strain, originating from rhizospheric soil fields of soybeans, was found to penetrate plant root cells and establish itself as an endophyte. The presence of <em>B. velezensis</em> S141 not only triggered the expression of marker genes associated with early stages of AMF colonization and nutrient uptake in the host plant, but it also led to an upregulation of AMF genes responsible for cell cycle regulation. These results suggest that <em>B. velezensis</em> S141 holds promise as a helper bacterium in promoting plant-AMF symbiosis.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"54 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the tripartite synergistic interaction of plant-arbuscular mycorrhizal fungus symbiosis by endophytic Bacillus velezensis S141 in Lotus japonicus\",\"authors\":\"\",\"doi\":\"10.1007/s13199-024-00975-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The crucial roles played by arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) in enhancing plant nutrient uptake and soil quality are widely recognized across various plant species. This study explored the effects and potential of <em>Bacillus velezensis</em> S141 as a plant growth-promoting rhizobacterium on promoting a symbiotic relationship of AMF, <em>Rhizophagus irregularis</em> with <em>Lotus japonicus</em>. <em>B. velezensis</em> S141 inoculation positively influenced fungal growth and development. <em>B. velezensis</em> S141 promoted fungal abundance, such as AM root colonization and spore number. It also boosted plant nutrient uptake, enhancing the nitrogen and phosphorus concentration by 1.65 and 1.51 times, respectively, under tripartite interaction conditions. However, the indole-3-acetic acid (IAA) producing capability of <em>B</em>. <em>velezensis</em> S141, based on the inoculation experiment test of S141 mutants defective in IAA synthesis, was not the key mechanism for promoting this symbiotic interaction. Interestingly, the S141 strain, originating from rhizospheric soil fields of soybeans, was found to penetrate plant root cells and establish itself as an endophyte. The presence of <em>B. velezensis</em> S141 not only triggered the expression of marker genes associated with early stages of AMF colonization and nutrient uptake in the host plant, but it also led to an upregulation of AMF genes responsible for cell cycle regulation. These results suggest that <em>B. velezensis</em> S141 holds promise as a helper bacterium in promoting plant-AMF symbiosis.</p>\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-024-00975-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-024-00975-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Unveiling the tripartite synergistic interaction of plant-arbuscular mycorrhizal fungus symbiosis by endophytic Bacillus velezensis S141 in Lotus japonicus
Abstract
The crucial roles played by arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) in enhancing plant nutrient uptake and soil quality are widely recognized across various plant species. This study explored the effects and potential of Bacillus velezensis S141 as a plant growth-promoting rhizobacterium on promoting a symbiotic relationship of AMF, Rhizophagus irregularis with Lotus japonicus. B. velezensis S141 inoculation positively influenced fungal growth and development. B. velezensis S141 promoted fungal abundance, such as AM root colonization and spore number. It also boosted plant nutrient uptake, enhancing the nitrogen and phosphorus concentration by 1.65 and 1.51 times, respectively, under tripartite interaction conditions. However, the indole-3-acetic acid (IAA) producing capability of B. velezensis S141, based on the inoculation experiment test of S141 mutants defective in IAA synthesis, was not the key mechanism for promoting this symbiotic interaction. Interestingly, the S141 strain, originating from rhizospheric soil fields of soybeans, was found to penetrate plant root cells and establish itself as an endophyte. The presence of B. velezensis S141 not only triggered the expression of marker genes associated with early stages of AMF colonization and nutrient uptake in the host plant, but it also led to an upregulation of AMF genes responsible for cell cycle regulation. These results suggest that B. velezensis S141 holds promise as a helper bacterium in promoting plant-AMF symbiosis.
期刊介绍:
Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field.
Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.