土耳其芒硝和添加聚乳酸的生高岭土复合薄膜的结构、性能和结晶行为

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Composite Materials Pub Date : 2024-03-11 DOI:10.1177/00219983241240628
İbrahim Şen
{"title":"土耳其芒硝和添加聚乳酸的生高岭土复合薄膜的结构、性能和结晶行为","authors":"İbrahim Şen","doi":"10.1177/00219983241240628","DOIUrl":null,"url":null,"abstract":"Polylactic acid (PLA) film composites filled with two clays, Raw Kaolin (KAO), an inorganic structure, and Leonardite (LEO), an organic structure, as well as KAO/LEO mixtures, were prepared via solvent casting method. The main aim of this research was to investigate both the individual and the synergetic effects of LEO and KAO; they are incorporated together into a PLA matrix. The influence of these fillers content on the morphological and structural characteristics of the composites was investigated by the DSC, TGA, FT-IR, SEM, XRD, color, haze, and opacity analysis. According to the TGA analysis, significant decreases in Tmax2 were observed with the addition of LEO in PLA. It is also seen in films with KAO/LEO that support this result. Utilizing the solvent casting method, two melting points were formed in PLA films. The P0 film has lower Tg, Tcc, and Tm1 values than other films. However, there were small changes in Tg and Tm2 values in all films. Up to 7.5% amount of LEO and KAO, the mechanical properties of the films improved. The 3L film exhibited the best mechanical properties. The filler materials used were mostly homogeneously distributed, according to the SEM analysis, and as the amount increased, agglomerations were observed in the fillings on the surface. The addition of LEO and KAO changed the surface color, visual appearance, and opacity significantly. The haze values of films are near 100. These film composites have been shown to improve many properties of the P0 film.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"24 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure, performance, and crystallization behavior of Turkey leonardite and raw kaolin added polylactic acid composite films\",\"authors\":\"İbrahim Şen\",\"doi\":\"10.1177/00219983241240628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polylactic acid (PLA) film composites filled with two clays, Raw Kaolin (KAO), an inorganic structure, and Leonardite (LEO), an organic structure, as well as KAO/LEO mixtures, were prepared via solvent casting method. The main aim of this research was to investigate both the individual and the synergetic effects of LEO and KAO; they are incorporated together into a PLA matrix. The influence of these fillers content on the morphological and structural characteristics of the composites was investigated by the DSC, TGA, FT-IR, SEM, XRD, color, haze, and opacity analysis. According to the TGA analysis, significant decreases in Tmax2 were observed with the addition of LEO in PLA. It is also seen in films with KAO/LEO that support this result. Utilizing the solvent casting method, two melting points were formed in PLA films. The P0 film has lower Tg, Tcc, and Tm1 values than other films. However, there were small changes in Tg and Tm2 values in all films. Up to 7.5% amount of LEO and KAO, the mechanical properties of the films improved. The 3L film exhibited the best mechanical properties. The filler materials used were mostly homogeneously distributed, according to the SEM analysis, and as the amount increased, agglomerations were observed in the fillings on the surface. The addition of LEO and KAO changed the surface color, visual appearance, and opacity significantly. The haze values of films are near 100. These film composites have been shown to improve many properties of the P0 film.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241240628\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241240628","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

通过溶剂浇铸法制备了填充了两种粘土(无机结构的生高岭土(KAO)和有机结构的莱昂纳多石(LEO)以及 KAO/LEO 混合物)的聚乳酸(PLA)薄膜复合材料。本研究的主要目的是研究 LEO 和 KAO 共同加入聚乳酸基体后的单独效应和协同效应。通过 DSC、TGA、傅立叶变换红外光谱、扫描电镜、XRD、颜色、雾度和不透明度分析,研究了这些填料含量对复合材料形态和结构特征的影响。根据 TGA 分析,在聚乳酸中添加 LEO 后,Tmax2 明显降低。在含有 KAO/LEO 的薄膜中也可以看到这一结果。利用溶剂浇铸法,聚乳酸薄膜形成了两个熔点。P0 薄膜的 Tg、Tcc 和 Tm1 值低于其他薄膜。然而,所有薄膜的 Tg 值和 Tm2 值变化都很小。当 LEO 和 KAO 的用量达到 7.5% 时,薄膜的机械性能有所改善。3L 薄膜的机械性能最好。根据扫描电镜分析,所使用的填料大部分分布均匀,随着用量的增加,表面的填料出现了团聚现象。加入 LEO 和 KAO 后,表面颜色、视觉外观和不透明度都发生了显著变化。薄膜的雾度值接近 100。事实证明,这些薄膜复合材料改善了 P0 薄膜的许多性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure, performance, and crystallization behavior of Turkey leonardite and raw kaolin added polylactic acid composite films
Polylactic acid (PLA) film composites filled with two clays, Raw Kaolin (KAO), an inorganic structure, and Leonardite (LEO), an organic structure, as well as KAO/LEO mixtures, were prepared via solvent casting method. The main aim of this research was to investigate both the individual and the synergetic effects of LEO and KAO; they are incorporated together into a PLA matrix. The influence of these fillers content on the morphological and structural characteristics of the composites was investigated by the DSC, TGA, FT-IR, SEM, XRD, color, haze, and opacity analysis. According to the TGA analysis, significant decreases in Tmax2 were observed with the addition of LEO in PLA. It is also seen in films with KAO/LEO that support this result. Utilizing the solvent casting method, two melting points were formed in PLA films. The P0 film has lower Tg, Tcc, and Tm1 values than other films. However, there were small changes in Tg and Tm2 values in all films. Up to 7.5% amount of LEO and KAO, the mechanical properties of the films improved. The 3L film exhibited the best mechanical properties. The filler materials used were mostly homogeneously distributed, according to the SEM analysis, and as the amount increased, agglomerations were observed in the fillings on the surface. The addition of LEO and KAO changed the surface color, visual appearance, and opacity significantly. The haze values of films are near 100. These film composites have been shown to improve many properties of the P0 film.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Micromechanics-based multi-scale framework with strain-rate effects for the simulation of ballistic impact on composite laminates Recycling catfish bone for additive manufacturing of silicone composite structures Mechanical performances of unsatured polyester composite reinforced by OleaEuropea var. Sylvestris fibers: Characterization, modeling and optimization of fiber textural properties Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1