基于改进蚁群算法的天-空-地一体化网络路由组网技术

IF 1.9 4区 工程技术 Q2 Engineering EURASIP Journal on Advances in Signal Processing Pub Date : 2024-03-13 DOI:10.1186/s13634-024-01131-5
Wuzhou Nie, Yong Chen, Yuhao Wang, Peizheng Wang, Meng Li, Lei Ning
{"title":"基于改进蚁群算法的天-空-地一体化网络路由组网技术","authors":"Wuzhou Nie, Yong Chen, Yuhao Wang, Peizheng Wang, Meng Li, Lei Ning","doi":"10.1186/s13634-024-01131-5","DOIUrl":null,"url":null,"abstract":"<p>Space-air-ground integrated networks comprise a multi-level heterogeneous integrated network that combines satellite-based, aerial, and terrestrial networks. With the increasing human exploration of space and growing demands for internet applications, space-air-ground integrated networks have gradually emerged as the direction for communication network development. These networks face various challenges such as extensive coverage, diverse communication node types, low-quality communication links, and simultaneous operation of multiple network protocols. However, the rapid development and widespread application of artificial intelligence and machine learning technologies in recent years have offered new perspectives and solutions for the communication architecture and routing algorithm research within space-air-ground integrated networks. In these networks, not all nodes can typically communicate directly with satellites; instead, a specific set of specialized communication nodes facilitates data communication between aerial and satellite networks due to their superior communication capabilities. Consequently, in contrast to traditional communication architectures, space-air-ground integrated networks, particularly in the terrestrial layer, often need to address challenges related to the diversity of communication node types and low-quality communication links. A well-designed routing approach becomes crucial in addressing these issues. Therefore, this paper proposes an AODV routing network protocol based on an improved ant colony algorithm (AC-AODV), specifically designed for the terrestrial layer within the space-air-ground integrated networks. By integrating information such as the type, energy, and location of communication nodes, this protocol aims to facilitate network communication. The objective is to guide information flow through nodes that are more suitable for communication, either by relaying communication or by connecting with satellites through specialized nodes. This approach alleviates the burden on ordinary nodes within the terrestrial communication network, thereby enhancing the overall network performance. In this protocol, specialized nodes hold a higher forwarding priority than regular nodes. When a source node needs to transmit data, it enters the route discovery phase, utilizing its own type, location, and energy information as heuristic data to calculate forwarding probabilities. Subsequently, it broadcasts route request (RREQ) messages to find the path. Upon receiving the RREQ message, the destination node sends an RREP message for updating information elements and selects the optimal path based on these information elements. Compared to AODV, AC-AODV shows significant improvements in performance metrics such as transmission latency, throughput, energy conversion rate, and packet loss rate.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"70 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Routing networking technology based on improved ant colony algorithm in space-air-ground integrated network\",\"authors\":\"Wuzhou Nie, Yong Chen, Yuhao Wang, Peizheng Wang, Meng Li, Lei Ning\",\"doi\":\"10.1186/s13634-024-01131-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Space-air-ground integrated networks comprise a multi-level heterogeneous integrated network that combines satellite-based, aerial, and terrestrial networks. With the increasing human exploration of space and growing demands for internet applications, space-air-ground integrated networks have gradually emerged as the direction for communication network development. These networks face various challenges such as extensive coverage, diverse communication node types, low-quality communication links, and simultaneous operation of multiple network protocols. However, the rapid development and widespread application of artificial intelligence and machine learning technologies in recent years have offered new perspectives and solutions for the communication architecture and routing algorithm research within space-air-ground integrated networks. In these networks, not all nodes can typically communicate directly with satellites; instead, a specific set of specialized communication nodes facilitates data communication between aerial and satellite networks due to their superior communication capabilities. Consequently, in contrast to traditional communication architectures, space-air-ground integrated networks, particularly in the terrestrial layer, often need to address challenges related to the diversity of communication node types and low-quality communication links. A well-designed routing approach becomes crucial in addressing these issues. Therefore, this paper proposes an AODV routing network protocol based on an improved ant colony algorithm (AC-AODV), specifically designed for the terrestrial layer within the space-air-ground integrated networks. By integrating information such as the type, energy, and location of communication nodes, this protocol aims to facilitate network communication. The objective is to guide information flow through nodes that are more suitable for communication, either by relaying communication or by connecting with satellites through specialized nodes. This approach alleviates the burden on ordinary nodes within the terrestrial communication network, thereby enhancing the overall network performance. In this protocol, specialized nodes hold a higher forwarding priority than regular nodes. When a source node needs to transmit data, it enters the route discovery phase, utilizing its own type, location, and energy information as heuristic data to calculate forwarding probabilities. Subsequently, it broadcasts route request (RREQ) messages to find the path. Upon receiving the RREQ message, the destination node sends an RREP message for updating information elements and selects the optimal path based on these information elements. Compared to AODV, AC-AODV shows significant improvements in performance metrics such as transmission latency, throughput, energy conversion rate, and packet loss rate.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01131-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01131-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

天-空-地一体化网络由卫星网络、空中网络和地面网络相结合的多层次异构一体化网络组成。随着人类对太空探索的不断深入和互联网应用需求的日益增长,天-空-地一体化网络逐渐成为通信网络发展的方向。这些网络面临着覆盖范围广、通信节点类型多样、通信链路质量低、多种网络协议同时运行等各种挑战。然而,近年来人工智能和机器学习技术的快速发展和广泛应用,为天-空-地一体化网络的通信架构和路由算法研究提供了新的视角和解决方案。在这些网络中,通常并非所有节点都能直接与卫星通信;相反,一组特定的专用通信节点凭借其卓越的通信能力,为空中网络与卫星网络之间的数据通信提供了便利。因此,与传统通信架构相比,天-空-地一体化网络,尤其是地面层的天-空-地一体化网络,往往需要应对与通信节点类型多样性和低质量通信链路有关的挑战。精心设计的路由方法对解决这些问题至关重要。因此,本文提出了一种基于改进蚁群算法(AC-AODV)的 AODV 路由网络协议,专门针对空-空-地一体化网络中的地面层而设计。通过整合通信节点的类型、能量和位置等信息,该协议旨在促进网络通信。其目的是通过中继通信或通过专门节点与卫星连接,引导信息流流经更适合通信的节点。这种方法减轻了地面通信网络中普通节点的负担,从而提高了网络的整体性能。在该协议中,专用节点比普通节点拥有更高的转发优先权。当源节点需要传输数据时,它会进入路由发现阶段,利用自身的类型、位置和能量信息作为启发式数据来计算转发概率。随后,它会广播路由请求(RREQ)信息以寻找路径。目的节点收到 RREQ 消息后,会发送 RREP 消息更新信息要素,并根据这些信息要素选择最优路径。与 AODV 相比,AC-AODV 在传输延迟、吞吐量、能量转换率和数据包丢失率等性能指标上都有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Routing networking technology based on improved ant colony algorithm in space-air-ground integrated network

Space-air-ground integrated networks comprise a multi-level heterogeneous integrated network that combines satellite-based, aerial, and terrestrial networks. With the increasing human exploration of space and growing demands for internet applications, space-air-ground integrated networks have gradually emerged as the direction for communication network development. These networks face various challenges such as extensive coverage, diverse communication node types, low-quality communication links, and simultaneous operation of multiple network protocols. However, the rapid development and widespread application of artificial intelligence and machine learning technologies in recent years have offered new perspectives and solutions for the communication architecture and routing algorithm research within space-air-ground integrated networks. In these networks, not all nodes can typically communicate directly with satellites; instead, a specific set of specialized communication nodes facilitates data communication between aerial and satellite networks due to their superior communication capabilities. Consequently, in contrast to traditional communication architectures, space-air-ground integrated networks, particularly in the terrestrial layer, often need to address challenges related to the diversity of communication node types and low-quality communication links. A well-designed routing approach becomes crucial in addressing these issues. Therefore, this paper proposes an AODV routing network protocol based on an improved ant colony algorithm (AC-AODV), specifically designed for the terrestrial layer within the space-air-ground integrated networks. By integrating information such as the type, energy, and location of communication nodes, this protocol aims to facilitate network communication. The objective is to guide information flow through nodes that are more suitable for communication, either by relaying communication or by connecting with satellites through specialized nodes. This approach alleviates the burden on ordinary nodes within the terrestrial communication network, thereby enhancing the overall network performance. In this protocol, specialized nodes hold a higher forwarding priority than regular nodes. When a source node needs to transmit data, it enters the route discovery phase, utilizing its own type, location, and energy information as heuristic data to calculate forwarding probabilities. Subsequently, it broadcasts route request (RREQ) messages to find the path. Upon receiving the RREQ message, the destination node sends an RREP message for updating information elements and selects the optimal path based on these information elements. Compared to AODV, AC-AODV shows significant improvements in performance metrics such as transmission latency, throughput, energy conversion rate, and packet loss rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURASIP Journal on Advances in Signal Processing
EURASIP Journal on Advances in Signal Processing 工程技术-工程:电子与电气
CiteScore
3.50
自引率
10.50%
发文量
109
审稿时长
2.6 months
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
期刊最新文献
Double-layer data-hiding mechanism for ECG signals Maximum radial pattern matching for minimum star map identification Optimized power and speed of Split-Radix, Radix-4 and Radix-2 FFT structures Performance analysis of unconstrained partitioned-block frequency-domain adaptive filters in under-modeling scenarios Maximum length binary sequences and spectral power distribution of periodic signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1