Yimin Wang, Yuhong Du, Changyun Miao, Di Miao, Yao Zheng, Dengjie Yang
{"title":"基于多模式融合的传送带纵向撕裂检测方法","authors":"Yimin Wang, Yuhong Du, Changyun Miao, Di Miao, Yao Zheng, Dengjie Yang","doi":"10.1007/s11276-024-03693-6","DOIUrl":null,"url":null,"abstract":"<p>The longitudinal tear of conveyor belts is the most common accident occurring at the workplace. Given the limitations on accuracy and stability of current single-modal approaches to detecting the longitudinal tear of conveyor belts, a solution is proposed in this paper through Audio-Visual Fusion. According to this method, a linear CCD camera is used to capture the images of the conveyor belt and a microphone array for the acquisition of sound signals from the operating belt conveyor. Then, the visual data is inputted into an improved Shufflenet_V2 network for classification, while the preprocessed sound signals are subjected to feature extraction and classification using a CNN-LSTM network. Finally, decision fusion is performed in line with Dempster-Shafer theory for image and sound classification. Experimental results show that the method proposed in this paper achieves an accuracy of 97% in tear detection, which is 1.2% and 2.8% higher compared to using images or sound alone, respectively. Apparently, the method proposed in this paper is effective in enhancing the performance of the existing detection methods.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"297 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal tear detection method for conveyor belt based on multi-mode fusion\",\"authors\":\"Yimin Wang, Yuhong Du, Changyun Miao, Di Miao, Yao Zheng, Dengjie Yang\",\"doi\":\"10.1007/s11276-024-03693-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The longitudinal tear of conveyor belts is the most common accident occurring at the workplace. Given the limitations on accuracy and stability of current single-modal approaches to detecting the longitudinal tear of conveyor belts, a solution is proposed in this paper through Audio-Visual Fusion. According to this method, a linear CCD camera is used to capture the images of the conveyor belt and a microphone array for the acquisition of sound signals from the operating belt conveyor. Then, the visual data is inputted into an improved Shufflenet_V2 network for classification, while the preprocessed sound signals are subjected to feature extraction and classification using a CNN-LSTM network. Finally, decision fusion is performed in line with Dempster-Shafer theory for image and sound classification. Experimental results show that the method proposed in this paper achieves an accuracy of 97% in tear detection, which is 1.2% and 2.8% higher compared to using images or sound alone, respectively. Apparently, the method proposed in this paper is effective in enhancing the performance of the existing detection methods.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"297 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03693-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03693-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Longitudinal tear detection method for conveyor belt based on multi-mode fusion
The longitudinal tear of conveyor belts is the most common accident occurring at the workplace. Given the limitations on accuracy and stability of current single-modal approaches to detecting the longitudinal tear of conveyor belts, a solution is proposed in this paper through Audio-Visual Fusion. According to this method, a linear CCD camera is used to capture the images of the conveyor belt and a microphone array for the acquisition of sound signals from the operating belt conveyor. Then, the visual data is inputted into an improved Shufflenet_V2 network for classification, while the preprocessed sound signals are subjected to feature extraction and classification using a CNN-LSTM network. Finally, decision fusion is performed in line with Dempster-Shafer theory for image and sound classification. Experimental results show that the method proposed in this paper achieves an accuracy of 97% in tear detection, which is 1.2% and 2.8% higher compared to using images or sound alone, respectively. Apparently, the method proposed in this paper is effective in enhancing the performance of the existing detection methods.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.