Majed Alrobaian, Munerah Alfadhel, Sayed Zayed, Mohammad AlDosari, Hassan Arida
{"title":"基于纳米颗粒敏感膜的一次性丝网印刷微芯片用于铅的电位测定","authors":"Majed Alrobaian, Munerah Alfadhel, Sayed Zayed, Mohammad AlDosari, Hassan Arida","doi":"10.1155/2024/7610614","DOIUrl":null,"url":null,"abstract":"Realization of screen-printed disposable microchip based on organic membrane sensitive layer highly responsive to lead has been demonstrated for the first time. Fabrication, potentiometric characterization and analytical application of the novel microchip have been reported. A sensitive layer comprises TiO<sub>2</sub> nanoparticles and multiwalled carbon nanotubes “MWCNTs” composite incorporated in PVC membrane has uploaded on the plastic screen-printed microelectrode substrate surface using novel protocol. The new chip provided a linear behavior for Pb<sup>2+</sup> ions over the lead concentration range of 1 × 10<sup>−6</sup>–1 × 10<sup>−1</sup> mole L<sup>−1</sup> with super Nernstian sensitivity (49 mV), relatively long life span (>4 months), and a fast response time (10 s). The advantages showed by the microchip include simple fabrication, small size, mass production, cost effectiveness, and automation and integration feasibility. The realized new microchip has been successfully utilized in the quantification of some lead (II) samples with average recovery of 101.9% and the RDS was <3.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disposable Screen-Printed Microchip Based on Nanoparticles Sensitive Membrane for Potentiometric Determination of Lead\",\"authors\":\"Majed Alrobaian, Munerah Alfadhel, Sayed Zayed, Mohammad AlDosari, Hassan Arida\",\"doi\":\"10.1155/2024/7610614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realization of screen-printed disposable microchip based on organic membrane sensitive layer highly responsive to lead has been demonstrated for the first time. Fabrication, potentiometric characterization and analytical application of the novel microchip have been reported. A sensitive layer comprises TiO<sub>2</sub> nanoparticles and multiwalled carbon nanotubes “MWCNTs” composite incorporated in PVC membrane has uploaded on the plastic screen-printed microelectrode substrate surface using novel protocol. The new chip provided a linear behavior for Pb<sup>2+</sup> ions over the lead concentration range of 1 × 10<sup>−6</sup>–1 × 10<sup>−1</sup> mole L<sup>−1</sup> with super Nernstian sensitivity (49 mV), relatively long life span (>4 months), and a fast response time (10 s). The advantages showed by the microchip include simple fabrication, small size, mass production, cost effectiveness, and automation and integration feasibility. The realized new microchip has been successfully utilized in the quantification of some lead (II) samples with average recovery of 101.9% and the RDS was <3.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7610614\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7610614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Disposable Screen-Printed Microchip Based on Nanoparticles Sensitive Membrane for Potentiometric Determination of Lead
Realization of screen-printed disposable microchip based on organic membrane sensitive layer highly responsive to lead has been demonstrated for the first time. Fabrication, potentiometric characterization and analytical application of the novel microchip have been reported. A sensitive layer comprises TiO2 nanoparticles and multiwalled carbon nanotubes “MWCNTs” composite incorporated in PVC membrane has uploaded on the plastic screen-printed microelectrode substrate surface using novel protocol. The new chip provided a linear behavior for Pb2+ ions over the lead concentration range of 1 × 10−6–1 × 10−1 mole L−1 with super Nernstian sensitivity (49 mV), relatively long life span (>4 months), and a fast response time (10 s). The advantages showed by the microchip include simple fabrication, small size, mass production, cost effectiveness, and automation and integration feasibility. The realized new microchip has been successfully utilized in the quantification of some lead (II) samples with average recovery of 101.9% and the RDS was <3.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.