Karla Bianca de Deus Bento, Yve Canaveze, Silvia Rodrigues Machado
{"title":"Ocotea pulchella(月桂科)的无性器官中同时存在油脂和粘液特异体:发育、超微结构和分泌物的比较。","authors":"Karla Bianca de Deus Bento, Yve Canaveze, Silvia Rodrigues Machado","doi":"10.1007/s00709-024-01942-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study compares oil and mucilage idioblasts occurring together in the vegetative organs of Ocotea pulchella, a Lauraceae species. Our focus is specifically on the ontogeny and developmental cytology of these secretory cells. Both types of idioblasts originate from solitary cells located in the fundamental meristem, underlying the protodermis. The growth of both types of idioblasts is asynchronous, with the oil idioblasts developing first, but their initiation is restricted to the early stages of organ development. Mucilaginous idioblasts occur exclusively in the palisade parenchyma, while oil idioblasts are scattered throughout the mesophyll, midrib, and petiole of the leaves. The lamellar secretion of mucilage idioblasts is mostly made up of polysaccharides, while the secretion of oil idioblasts is made up of terpenes and lipids. Cupule occurred only in the oil idioblasts, while suberized layers occurred in both types of cells. We found that immature oil idioblasts that are close to each other fuse; mature mucilage idioblasts have labyrinthine walls arranged in a reticulate pattern; the cells close to the oil idioblasts have a pectin protective layer; and the oil idioblasts have a sheath of phenolic cells. In contrast to previous reports, the two types of secretory idioblasts were recognized during the early stages of their development. The results emphasize the importance of combining optical and electron microscopy methods to observe the ontogenetic, histochemical and ultrastructural changes that occur during the development of the secretory idioblasts. This can help us understand how secreting cells store their secretions and how their walls become specialized.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"877-895"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil and mucilage idioblasts co-occur in the vegetative organs of Ocotea pulchella (Lauraceae): comparative development, ultrastructure and secretions.\",\"authors\":\"Karla Bianca de Deus Bento, Yve Canaveze, Silvia Rodrigues Machado\",\"doi\":\"10.1007/s00709-024-01942-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study compares oil and mucilage idioblasts occurring together in the vegetative organs of Ocotea pulchella, a Lauraceae species. Our focus is specifically on the ontogeny and developmental cytology of these secretory cells. Both types of idioblasts originate from solitary cells located in the fundamental meristem, underlying the protodermis. The growth of both types of idioblasts is asynchronous, with the oil idioblasts developing first, but their initiation is restricted to the early stages of organ development. Mucilaginous idioblasts occur exclusively in the palisade parenchyma, while oil idioblasts are scattered throughout the mesophyll, midrib, and petiole of the leaves. The lamellar secretion of mucilage idioblasts is mostly made up of polysaccharides, while the secretion of oil idioblasts is made up of terpenes and lipids. Cupule occurred only in the oil idioblasts, while suberized layers occurred in both types of cells. We found that immature oil idioblasts that are close to each other fuse; mature mucilage idioblasts have labyrinthine walls arranged in a reticulate pattern; the cells close to the oil idioblasts have a pectin protective layer; and the oil idioblasts have a sheath of phenolic cells. In contrast to previous reports, the two types of secretory idioblasts were recognized during the early stages of their development. The results emphasize the importance of combining optical and electron microscopy methods to observe the ontogenetic, histochemical and ultrastructural changes that occur during the development of the secretory idioblasts. This can help us understand how secreting cells store their secretions and how their walls become specialized.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"877-895\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01942-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01942-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Oil and mucilage idioblasts co-occur in the vegetative organs of Ocotea pulchella (Lauraceae): comparative development, ultrastructure and secretions.
This study compares oil and mucilage idioblasts occurring together in the vegetative organs of Ocotea pulchella, a Lauraceae species. Our focus is specifically on the ontogeny and developmental cytology of these secretory cells. Both types of idioblasts originate from solitary cells located in the fundamental meristem, underlying the protodermis. The growth of both types of idioblasts is asynchronous, with the oil idioblasts developing first, but their initiation is restricted to the early stages of organ development. Mucilaginous idioblasts occur exclusively in the palisade parenchyma, while oil idioblasts are scattered throughout the mesophyll, midrib, and petiole of the leaves. The lamellar secretion of mucilage idioblasts is mostly made up of polysaccharides, while the secretion of oil idioblasts is made up of terpenes and lipids. Cupule occurred only in the oil idioblasts, while suberized layers occurred in both types of cells. We found that immature oil idioblasts that are close to each other fuse; mature mucilage idioblasts have labyrinthine walls arranged in a reticulate pattern; the cells close to the oil idioblasts have a pectin protective layer; and the oil idioblasts have a sheath of phenolic cells. In contrast to previous reports, the two types of secretory idioblasts were recognized during the early stages of their development. The results emphasize the importance of combining optical and electron microscopy methods to observe the ontogenetic, histochemical and ultrastructural changes that occur during the development of the secretory idioblasts. This can help us understand how secreting cells store their secretions and how their walls become specialized.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".