{"title":"模拟环境变化对演化种群的影响","authors":"John A. Bullinaria","doi":"10.1162/artl_a_00429","DOIUrl":null,"url":null,"abstract":"This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 2","pages":"147-170"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating the Effect of Environmental Change on Evolving Populations\",\"authors\":\"John A. Bullinaria\",\"doi\":\"10.1162/artl_a_00429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"30 2\",\"pages\":\"147-170\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10541911/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10541911/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Simulating the Effect of Environmental Change on Evolving Populations
This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.