用于快速评估沿海地区波浪和风暴潮响应的新型混合机器学习模型

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2024-03-08 DOI:10.1016/j.coastaleng.2024.104503
Saeed Saviz Naeini, Reda Snaiki
{"title":"用于快速评估沿海地区波浪和风暴潮响应的新型混合机器学习模型","authors":"Saeed Saviz Naeini,&nbsp;Reda Snaiki","doi":"10.1016/j.coastaleng.2024.104503","DOIUrl":null,"url":null,"abstract":"<div><p>Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378383924000516/pdfft?md5=9a7e7d99e8a4175c6f46b5ffbfb6ad20&pid=1-s2.0-S0378383924000516-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region\",\"authors\":\"Saeed Saviz Naeini,&nbsp;Reda Snaiki\",\"doi\":\"10.1016/j.coastaleng.2024.104503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378383924000516/pdfft?md5=9a7e7d99e8a4175c6f46b5ffbfb6ad20&pid=1-s2.0-S0378383924000516-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924000516\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924000516","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

风暴潮和海浪是造成热带和外热带气旋相关损失的主要原因。虽然高保真数值模型大大提高了风暴潮和海浪的模拟精度,但由于其计算要求较高,用于概率分析、风险评估或快速预测并不实用。在这项研究中,开发了一种结合了降维和数据驱动技术的新型混合模式,用于快速评估 沿岸扩展区域的海浪和风暴潮响应。具体来说,该混合模型基于深度自动编码器(DAE)同时识别高维空间系统的低维表示,同时使用深度神经网络(DNN)将风暴参数映射到所获得的低维潜在空间。为了训练混合模型,设计了一个组合加权损失函数,以促进 DAE 和 DNN 训练之间的平衡,并达到最佳精度。通过使用北大西洋综合海岸研究(NACCS)的合成数据进行案例研究,评估了混合模型的性能,这些数据涵盖了纽约和新泽西的关键区域。此外,还将所提出的方法与两个解耦模型进行了比较,其中回归模型基于 DNN,还原技术采用主成分分析 (PCA) 或 DAE,这些技术与 DNN 模型分开训练。混合模型具有较高的精度和计算效率,可作为早期预警系统或海浪和风暴潮概率风险评估的一部分轻松实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region

Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
An enhanced model for an extreme wave impacting a vertical cylinder An adaptive internal mass source wave-maker for short wave generation Convergence and divergence of storm waves induced by multi-scale currents: Observations and coupled wave-current modeling Wave overtopping discharges at rubble mound structures in shallow water Computations of energetic nearshore waves: Are weakly dispersive phase-resolving models telling the same story?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1