Chun Wang;Pin-Chun Chiu;Chun-Lin Ko;Sheng-Hsiang Tseng;Chun-Hsing Li
{"title":"具有 360° 相移范围的 340 GHz 太赫兹放大器-频率-倍增器链及其相位特性分析","authors":"Chun Wang;Pin-Chun Chiu;Chun-Lin Ko;Sheng-Hsiang Tseng;Chun-Hsing Li","doi":"10.1109/JETCAS.2023.3345358","DOIUrl":null,"url":null,"abstract":"A 340-GHz compact terahertz (THz) amplifier-frequency-multiplier chain (AMC) offering a full 360° phase shifting range for phased-array applications is proposed in this paper. The AMC comprises an 85 -GHz phase-shifter-embedded (\n<inline-formula> <tex-math>$\\Delta \\varphi $ </tex-math></inline-formula>\n-embedded) power amplifier (PA) and a high-output-power frequency quadrupler (FQ). The PA is equipped with multifunctional impedance matching networks (M-IMNs) that can simultaneously provide balun, impedance transformation, and phase-shifting functions. Analytic expressions have been derived to provide design guidelines for the M-IMNs. With the integrated M-IMNs, the proposed PA can concurrently deliver high output power and a phase shift exceeding 90° in a compact chip area. The proposed FQ can achieve optimal impedance matching at second and fourth harmonic frequencies, leading to the output power enhancement of 2.6 dB. Furthermore, the output phase of the PA is quadrupled by the FQ, resulting in the output signal of the AMC with a full 360° phase-shifting capability. A measurement setup for characterizing the phase of a THz signal is also presented. Implemented in a 40-nm CMOS technology without ultra-thick metal layers available, the proposed THz AMC achieves a peak output power of −3.5 dBm at 368 GHz with a conversion gain of 1.8 dB and a 3-dB bandwidth from 340 to 376 GHz. The output phase can continuously vary over 360° within the 324 to 346 GHz frequency range. The phase noise of the output signal at 346 GHz is −105 dBc/Hz at a 10-MHz offset frequency. The proposed 340-GHz AMC consumes 215.1 mW from a 0.9-V supply.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"52-66"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 340-GHz THz Amplifier-Frequency-Multiplier Chain With 360° Phase-Shifting Range and its Phase Characterization\",\"authors\":\"Chun Wang;Pin-Chun Chiu;Chun-Lin Ko;Sheng-Hsiang Tseng;Chun-Hsing Li\",\"doi\":\"10.1109/JETCAS.2023.3345358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 340-GHz compact terahertz (THz) amplifier-frequency-multiplier chain (AMC) offering a full 360° phase shifting range for phased-array applications is proposed in this paper. The AMC comprises an 85 -GHz phase-shifter-embedded (\\n<inline-formula> <tex-math>$\\\\Delta \\\\varphi $ </tex-math></inline-formula>\\n-embedded) power amplifier (PA) and a high-output-power frequency quadrupler (FQ). The PA is equipped with multifunctional impedance matching networks (M-IMNs) that can simultaneously provide balun, impedance transformation, and phase-shifting functions. Analytic expressions have been derived to provide design guidelines for the M-IMNs. With the integrated M-IMNs, the proposed PA can concurrently deliver high output power and a phase shift exceeding 90° in a compact chip area. The proposed FQ can achieve optimal impedance matching at second and fourth harmonic frequencies, leading to the output power enhancement of 2.6 dB. Furthermore, the output phase of the PA is quadrupled by the FQ, resulting in the output signal of the AMC with a full 360° phase-shifting capability. A measurement setup for characterizing the phase of a THz signal is also presented. Implemented in a 40-nm CMOS technology without ultra-thick metal layers available, the proposed THz AMC achieves a peak output power of −3.5 dBm at 368 GHz with a conversion gain of 1.8 dB and a 3-dB bandwidth from 340 to 376 GHz. The output phase can continuously vary over 360° within the 324 to 346 GHz frequency range. The phase noise of the output signal at 346 GHz is −105 dBc/Hz at a 10-MHz offset frequency. The proposed 340-GHz AMC consumes 215.1 mW from a 0.9-V supply.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"14 1\",\"pages\":\"52-66\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10367994/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10367994/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 340-GHz THz Amplifier-Frequency-Multiplier Chain With 360° Phase-Shifting Range and its Phase Characterization
A 340-GHz compact terahertz (THz) amplifier-frequency-multiplier chain (AMC) offering a full 360° phase shifting range for phased-array applications is proposed in this paper. The AMC comprises an 85 -GHz phase-shifter-embedded (
$\Delta \varphi $
-embedded) power amplifier (PA) and a high-output-power frequency quadrupler (FQ). The PA is equipped with multifunctional impedance matching networks (M-IMNs) that can simultaneously provide balun, impedance transformation, and phase-shifting functions. Analytic expressions have been derived to provide design guidelines for the M-IMNs. With the integrated M-IMNs, the proposed PA can concurrently deliver high output power and a phase shift exceeding 90° in a compact chip area. The proposed FQ can achieve optimal impedance matching at second and fourth harmonic frequencies, leading to the output power enhancement of 2.6 dB. Furthermore, the output phase of the PA is quadrupled by the FQ, resulting in the output signal of the AMC with a full 360° phase-shifting capability. A measurement setup for characterizing the phase of a THz signal is also presented. Implemented in a 40-nm CMOS technology without ultra-thick metal layers available, the proposed THz AMC achieves a peak output power of −3.5 dBm at 368 GHz with a conversion gain of 1.8 dB and a 3-dB bandwidth from 340 to 376 GHz. The output phase can continuously vary over 360° within the 324 to 346 GHz frequency range. The phase noise of the output signal at 346 GHz is −105 dBc/Hz at a 10-MHz offset frequency. The proposed 340-GHz AMC consumes 215.1 mW from a 0.9-V supply.
期刊介绍:
The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.