Sudipta Chakraborty;Gayatri Neeharika Sreepada;Michael Heimlich;Anand K. Verma
{"title":"利用砷化镓技术实现具有宽带抑制功能的紧凑型横向谐振低通滤波器","authors":"Sudipta Chakraborty;Gayatri Neeharika Sreepada;Michael Heimlich;Anand K. Verma","doi":"10.1109/JETCAS.2023.3340957","DOIUrl":null,"url":null,"abstract":"This work reports three designs of transverse resonance (TR)-based high-performance compact 5-pole Butterworth low-pass filters (TR-LPFs) at the cut-off frequency (\n<inline-formula> <tex-math>$f_{c}$ </tex-math></inline-formula>\n) 10.5 GHz in \n<inline-formula> <tex-math>$0.15~\\mu \\text{m}$ </tex-math></inline-formula>\n Gallium Arsenide (GaAs) pHEMT technology, with a chip size of 0.82 mm \n<inline-formula> <tex-math>$\\times0.87$ </tex-math></inline-formula>\n mm. Two fabricated TR-LPFs have 20 dB, 30 dB, 40 dB, and 50 dB attenuation levels with rejection bandwidths of (54 GHz, 54 GHz), (32 GHz, 52 GHz), (31 GHz, 50 GHz), and (18.5 GHz, 27 GHz) respectively, and insertion loss of 0.5 dB and 0.6 dB. The TR-LPF is a microstrip-based design, so unlike the lumped elements-based design, it could be designed and fabricated in the GaAs, and other technologies even at millimeter-wave frequencies. Such high performance LPF, using microstrip on a GaAs chip is not reported in the open literature.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"19-29"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Transverse-Resonance Low-Pass Filter With Wide Stop-Band Rejection Implemented in Gallium Arsenide Technology\",\"authors\":\"Sudipta Chakraborty;Gayatri Neeharika Sreepada;Michael Heimlich;Anand K. Verma\",\"doi\":\"10.1109/JETCAS.2023.3340957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports three designs of transverse resonance (TR)-based high-performance compact 5-pole Butterworth low-pass filters (TR-LPFs) at the cut-off frequency (\\n<inline-formula> <tex-math>$f_{c}$ </tex-math></inline-formula>\\n) 10.5 GHz in \\n<inline-formula> <tex-math>$0.15~\\\\mu \\\\text{m}$ </tex-math></inline-formula>\\n Gallium Arsenide (GaAs) pHEMT technology, with a chip size of 0.82 mm \\n<inline-formula> <tex-math>$\\\\times0.87$ </tex-math></inline-formula>\\n mm. Two fabricated TR-LPFs have 20 dB, 30 dB, 40 dB, and 50 dB attenuation levels with rejection bandwidths of (54 GHz, 54 GHz), (32 GHz, 52 GHz), (31 GHz, 50 GHz), and (18.5 GHz, 27 GHz) respectively, and insertion loss of 0.5 dB and 0.6 dB. The TR-LPF is a microstrip-based design, so unlike the lumped elements-based design, it could be designed and fabricated in the GaAs, and other technologies even at millimeter-wave frequencies. Such high performance LPF, using microstrip on a GaAs chip is not reported in the open literature.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"14 1\",\"pages\":\"19-29\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10348552/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10348552/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Compact Transverse-Resonance Low-Pass Filter With Wide Stop-Band Rejection Implemented in Gallium Arsenide Technology
This work reports three designs of transverse resonance (TR)-based high-performance compact 5-pole Butterworth low-pass filters (TR-LPFs) at the cut-off frequency (
$f_{c}$
) 10.5 GHz in
$0.15~\mu \text{m}$
Gallium Arsenide (GaAs) pHEMT technology, with a chip size of 0.82 mm
$\times0.87$
mm. Two fabricated TR-LPFs have 20 dB, 30 dB, 40 dB, and 50 dB attenuation levels with rejection bandwidths of (54 GHz, 54 GHz), (32 GHz, 52 GHz), (31 GHz, 50 GHz), and (18.5 GHz, 27 GHz) respectively, and insertion loss of 0.5 dB and 0.6 dB. The TR-LPF is a microstrip-based design, so unlike the lumped elements-based design, it could be designed and fabricated in the GaAs, and other technologies even at millimeter-wave frequencies. Such high performance LPF, using microstrip on a GaAs chip is not reported in the open literature.
期刊介绍:
The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.