用于可持续压力传感、手势监测和空间压力分布检测的分层结构多孔天然介质层

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Science: Advanced Materials and Devices Pub Date : 2024-03-11 DOI:10.1016/j.jsamd.2024.100706
Shenawar Ali Khan , Shahzad Iqbal , Sheik Abdur Rahman, Muhammad Saqib, Muhammad Muqeet Rehman, Woo Young Kim
{"title":"用于可持续压力传感、手势监测和空间压力分布检测的分层结构多孔天然介质层","authors":"Shenawar Ali Khan ,&nbsp;Shahzad Iqbal ,&nbsp;Sheik Abdur Rahman,&nbsp;Muhammad Saqib,&nbsp;Muhammad Muqeet Rehman,&nbsp;Woo Young Kim","doi":"10.1016/j.jsamd.2024.100706","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible pressure sensors are essential in intelligent skins, healthcare monitoring systems, and soft robotics to bridge mechanical movements and electrical signals. Conventional pressure sensors, however, have a variety of challenges, including a complex fabrication method, increased cost, and biocompatibility issues. This work presents a novel bio-friendly, hierarchically structured porous natural dielectric material based capacitive pressure sensor featuring a maximum sensitivity of 0.0572 kPa<sup>−1</sup>. The proposed pressure sensor uses a biofilm with a typically arranged honeycomb structure as a dielectric layer sandwiched between the Aluminum (Al) electrodes and incorporates polydimethylsiloxane (PDMS) encapsulation. With a 1.44 cm<sup>2</sup> sensing area, the device exhibits a response time (T<sub>res</sub>) of 250 ms and a recovery time (T<sub>rec</sub>) of 156 ms, functioning within a capacitive pressure sensing range of 0–110 kPa. This device monitors various human activities and stimuli and accurately detects pressure distribution and gesture recognition.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000376/pdfft?md5=d4d30f85055927b09c8ab58ee1e1c62b&pid=1-s2.0-S2468217924000376-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hierarchically structured porous natural dielectric layer for sustainable pressure sensing, gesture monitoring, and detecting spatial pressure distribution\",\"authors\":\"Shenawar Ali Khan ,&nbsp;Shahzad Iqbal ,&nbsp;Sheik Abdur Rahman,&nbsp;Muhammad Saqib,&nbsp;Muhammad Muqeet Rehman,&nbsp;Woo Young Kim\",\"doi\":\"10.1016/j.jsamd.2024.100706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible pressure sensors are essential in intelligent skins, healthcare monitoring systems, and soft robotics to bridge mechanical movements and electrical signals. Conventional pressure sensors, however, have a variety of challenges, including a complex fabrication method, increased cost, and biocompatibility issues. This work presents a novel bio-friendly, hierarchically structured porous natural dielectric material based capacitive pressure sensor featuring a maximum sensitivity of 0.0572 kPa<sup>−1</sup>. The proposed pressure sensor uses a biofilm with a typically arranged honeycomb structure as a dielectric layer sandwiched between the Aluminum (Al) electrodes and incorporates polydimethylsiloxane (PDMS) encapsulation. With a 1.44 cm<sup>2</sup> sensing area, the device exhibits a response time (T<sub>res</sub>) of 250 ms and a recovery time (T<sub>rec</sub>) of 156 ms, functioning within a capacitive pressure sensing range of 0–110 kPa. This device monitors various human activities and stimuli and accurately detects pressure distribution and gesture recognition.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000376/pdfft?md5=d4d30f85055927b09c8ab58ee1e1c62b&pid=1-s2.0-S2468217924000376-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000376\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000376","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性压力传感器是智能皮肤、医疗保健监测系统和软体机器人技术中不可或缺的部件,可将机械运动与电信号连接起来。然而,传统的压力传感器面临着各种挑战,包括复杂的制造方法、成本增加以及生物兼容性问题。本研究提出了一种新型生物友好型分层结构多孔天然双电材料电容式压力传感器,其最大灵敏度为 0.0572 kPa。所提出的压力传感器使用具有典型蜂巢结构的生物膜作为介电层,夹在铝电极之间,并采用聚二甲基硅氧烷(PDMS)封装。该器件的传感面积为 1.44 厘米,响应时间 (T) 为 250 毫秒,恢复时间 (T) 为 156 毫秒,电容式压力传感范围为 0-110 千帕。该设备可监测各种人体活动和刺激,准确检测压力分布和手势识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchically structured porous natural dielectric layer for sustainable pressure sensing, gesture monitoring, and detecting spatial pressure distribution

Flexible pressure sensors are essential in intelligent skins, healthcare monitoring systems, and soft robotics to bridge mechanical movements and electrical signals. Conventional pressure sensors, however, have a variety of challenges, including a complex fabrication method, increased cost, and biocompatibility issues. This work presents a novel bio-friendly, hierarchically structured porous natural dielectric material based capacitive pressure sensor featuring a maximum sensitivity of 0.0572 kPa−1. The proposed pressure sensor uses a biofilm with a typically arranged honeycomb structure as a dielectric layer sandwiched between the Aluminum (Al) electrodes and incorporates polydimethylsiloxane (PDMS) encapsulation. With a 1.44 cm2 sensing area, the device exhibits a response time (Tres) of 250 ms and a recovery time (Trec) of 156 ms, functioning within a capacitive pressure sensing range of 0–110 kPa. This device monitors various human activities and stimuli and accurately detects pressure distribution and gesture recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
期刊最新文献
Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators A novel carbon quantum dot (CQD) synthesis method with cost-effective reactants and a definitive indication: Hot bubble synthesis (HBBBS) Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning Photothermal impacts induced by laser pulse in a 2D semiconducting medium with temperature-dependent properties under strain–temperature rate-dependent theory Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1