{"title":"研究死态温度对内燃机中添加硼的燃料和不同燃料性能的影响。","authors":"Irfan UÇKAN, Ahmet Yakın, Rasim Behçet","doi":"10.1615/heattransres.2024050089","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the exergy variations of five different fuels developed for internal combustion engines. Two of these fuels were newly developed boron-added fuels. In many previous studies, only one dead state temperature was considered for exergy calculations. However, it is important to note that the dead state temperature can vary. Therefore, the impact of changing the dead state temperature on the exergy of the internal combustion engine becomes crucial. In this particular study, the exergy variations of the newly developed boron-additive fuels ES12.5 and MS12.5, as well as gasoline blended with ethanol (E12.5), gasoline blended with methane (M12.5), and pure gasoline (B100) were examined. These variations were analyzed at different dead state temperatures ranging from 273K to 298K.\nThis study focused on examining the detailed changes in the exergy of exhaust gases emitted from the combustion process, specifically at the exhaust outlet, with respect to variations in the dead state temperature. Furthermore, the impact of the dead state temperature on various parameters commonly used in thermodynamic analyses, including Improvement potential, productivity lack, and fuel depletion ratio were investigated.. Through analysis, the study revealed significant variations in the exergy of internal combustion engines when the dead state temperature was altered. These findings emphasized the importance of considering the dead state temperature as a critical factor in understanding and optimizing the exergy performance of internal combustion engines.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Effect of Dead State Temperature on the Performance of Boron Added Fuels and Different Fuels Used in an Internal Combustion Engine.\",\"authors\":\"Irfan UÇKAN, Ahmet Yakın, Rasim Behçet\",\"doi\":\"10.1615/heattransres.2024050089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to investigate the exergy variations of five different fuels developed for internal combustion engines. Two of these fuels were newly developed boron-added fuels. In many previous studies, only one dead state temperature was considered for exergy calculations. However, it is important to note that the dead state temperature can vary. Therefore, the impact of changing the dead state temperature on the exergy of the internal combustion engine becomes crucial. In this particular study, the exergy variations of the newly developed boron-additive fuels ES12.5 and MS12.5, as well as gasoline blended with ethanol (E12.5), gasoline blended with methane (M12.5), and pure gasoline (B100) were examined. These variations were analyzed at different dead state temperatures ranging from 273K to 298K.\\nThis study focused on examining the detailed changes in the exergy of exhaust gases emitted from the combustion process, specifically at the exhaust outlet, with respect to variations in the dead state temperature. Furthermore, the impact of the dead state temperature on various parameters commonly used in thermodynamic analyses, including Improvement potential, productivity lack, and fuel depletion ratio were investigated.. Through analysis, the study revealed significant variations in the exergy of internal combustion engines when the dead state temperature was altered. These findings emphasized the importance of considering the dead state temperature as a critical factor in understanding and optimizing the exergy performance of internal combustion engines.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/heattransres.2024050089\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024050089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Investigation of the Effect of Dead State Temperature on the Performance of Boron Added Fuels and Different Fuels Used in an Internal Combustion Engine.
This study aimed to investigate the exergy variations of five different fuels developed for internal combustion engines. Two of these fuels were newly developed boron-added fuels. In many previous studies, only one dead state temperature was considered for exergy calculations. However, it is important to note that the dead state temperature can vary. Therefore, the impact of changing the dead state temperature on the exergy of the internal combustion engine becomes crucial. In this particular study, the exergy variations of the newly developed boron-additive fuels ES12.5 and MS12.5, as well as gasoline blended with ethanol (E12.5), gasoline blended with methane (M12.5), and pure gasoline (B100) were examined. These variations were analyzed at different dead state temperatures ranging from 273K to 298K.
This study focused on examining the detailed changes in the exergy of exhaust gases emitted from the combustion process, specifically at the exhaust outlet, with respect to variations in the dead state temperature. Furthermore, the impact of the dead state temperature on various parameters commonly used in thermodynamic analyses, including Improvement potential, productivity lack, and fuel depletion ratio were investigated.. Through analysis, the study revealed significant variations in the exergy of internal combustion engines when the dead state temperature was altered. These findings emphasized the importance of considering the dead state temperature as a critical factor in understanding and optimizing the exergy performance of internal combustion engines.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.