风险价值有效性:具有半重尾的高频数据方法

IF 2 Q2 BUSINESS, FINANCE Risks Pub Date : 2024-03-13 DOI:10.3390/risks12030050
Mario Ivan Contreras-Valdez, Sonal Sahu, José Antonio Núñez-Mora, Roberto Joaquín Santillán-Salgado
{"title":"风险价值有效性:具有半重尾的高频数据方法","authors":"Mario Ivan Contreras-Valdez, Sonal Sahu, José Antonio Núñez-Mora, Roberto Joaquín Santillán-Salgado","doi":"10.3390/risks12030050","DOIUrl":null,"url":null,"abstract":"In the broader landscape of cryptocurrency risk management, this study delves into the nuanced estimation of Value-at-Risk (VaR) for a uniformly weighted portfolio of cryptocurrencies, employing the bivariate Normal Inverse Gaussian distribution renowned for its semi-heavy tails. Utilizing high-frequency data spanning between 1 January 2017 and 25 October 2022, with a primary focus on Bitcoin and Ethereum, our research seeks to accentuate the resilience of VaR methodology as a paramount risk assessment tool. The essence of our investigation lies in advancing the comprehension of VaR accuracy by quantitatively comparing the observed returns of both cryptocurrencies with their corresponding estimated values, with a central theme being the endorsement of the Normal Inverse Gaussian distribution as a potent model for risk measurement, particularly in the domain of high-frequency data. To bolster the statistical reliability of our results, we adopt a forward test methodology, showcasing not only a contribution to the evolution of risk assessment techniques in Finance but also underscoring the practicality of sophisticated distributional models in econometrics. Our findings not only contribute to the refinement of risk assessment methods but also highlight the applicability of such models in precisely modeling and forecasting financial risk within the dynamic realm of cryptocurrencies, epitomized by the case study of Bitcoin and Ethereum.","PeriodicalId":21282,"journal":{"name":"Risks","volume":"232 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Value-at-Risk Effectiveness: A High-Frequency Data Approach with Semi-Heavy Tails\",\"authors\":\"Mario Ivan Contreras-Valdez, Sonal Sahu, José Antonio Núñez-Mora, Roberto Joaquín Santillán-Salgado\",\"doi\":\"10.3390/risks12030050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the broader landscape of cryptocurrency risk management, this study delves into the nuanced estimation of Value-at-Risk (VaR) for a uniformly weighted portfolio of cryptocurrencies, employing the bivariate Normal Inverse Gaussian distribution renowned for its semi-heavy tails. Utilizing high-frequency data spanning between 1 January 2017 and 25 October 2022, with a primary focus on Bitcoin and Ethereum, our research seeks to accentuate the resilience of VaR methodology as a paramount risk assessment tool. The essence of our investigation lies in advancing the comprehension of VaR accuracy by quantitatively comparing the observed returns of both cryptocurrencies with their corresponding estimated values, with a central theme being the endorsement of the Normal Inverse Gaussian distribution as a potent model for risk measurement, particularly in the domain of high-frequency data. To bolster the statistical reliability of our results, we adopt a forward test methodology, showcasing not only a contribution to the evolution of risk assessment techniques in Finance but also underscoring the practicality of sophisticated distributional models in econometrics. Our findings not only contribute to the refinement of risk assessment methods but also highlight the applicability of such models in precisely modeling and forecasting financial risk within the dynamic realm of cryptocurrencies, epitomized by the case study of Bitcoin and Ethereum.\",\"PeriodicalId\":21282,\"journal\":{\"name\":\"Risks\",\"volume\":\"232 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/risks12030050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/risks12030050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在加密货币风险管理的大背景下,本研究深入探讨了加密货币均匀加权投资组合的风险价值(VaR)的细微估算,采用的是以半重尾著称的二元正态反高斯分布。我们的研究利用 2017 年 1 月 1 日至 2022 年 10 月 25 日期间的高频数据,主要关注比特币和以太坊,旨在强调 VaR 方法作为重要风险评估工具的弹性。我们调查的本质在于通过定量比较两种加密货币的观察收益和相应的估计值,来推进对 VaR 准确性的理解,其核心主题是认可正态反高斯分布作为风险测量的有效模型,尤其是在高频数据领域。为了增强结果的统计可靠性,我们采用了前向测试方法,不仅展示了我们对金融风险评估技术发展的贡献,还强调了精密分布模型在计量经济学中的实用性。我们的研究结果不仅有助于完善风险评估方法,还突出了这些模型在加密货币动态领域中精确建模和预测金融风险的适用性,比特币和以太坊的案例研究就是一个缩影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Value-at-Risk Effectiveness: A High-Frequency Data Approach with Semi-Heavy Tails
In the broader landscape of cryptocurrency risk management, this study delves into the nuanced estimation of Value-at-Risk (VaR) for a uniformly weighted portfolio of cryptocurrencies, employing the bivariate Normal Inverse Gaussian distribution renowned for its semi-heavy tails. Utilizing high-frequency data spanning between 1 January 2017 and 25 October 2022, with a primary focus on Bitcoin and Ethereum, our research seeks to accentuate the resilience of VaR methodology as a paramount risk assessment tool. The essence of our investigation lies in advancing the comprehension of VaR accuracy by quantitatively comparing the observed returns of both cryptocurrencies with their corresponding estimated values, with a central theme being the endorsement of the Normal Inverse Gaussian distribution as a potent model for risk measurement, particularly in the domain of high-frequency data. To bolster the statistical reliability of our results, we adopt a forward test methodology, showcasing not only a contribution to the evolution of risk assessment techniques in Finance but also underscoring the practicality of sophisticated distributional models in econometrics. Our findings not only contribute to the refinement of risk assessment methods but also highlight the applicability of such models in precisely modeling and forecasting financial risk within the dynamic realm of cryptocurrencies, epitomized by the case study of Bitcoin and Ethereum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Risks
Risks Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
3.80
自引率
22.70%
发文量
205
审稿时长
11 weeks
期刊最新文献
Funding Illiquidity Implied by S&P 500 Derivatives Dynamics of Foreign Exchange Futures Trading Volumes in Thailand Automated Machine Learning and Asset Pricing What Drives Banks to Provide Green Loans? Corporate Governance and Ownership Structure Perspectives of Vietnamese Listed Banks Trends and Risks in Mergers and Acquisitions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1