{"title":"辣白菜组蛋白去乙酰化酶基因的全基因组鉴定、系统发育分析和功能预测","authors":"Seher Yolcu, Seher Bahar Aciksoz","doi":"10.1007/s40415-024-00995-z","DOIUrl":null,"url":null,"abstract":"<p>Histone deacetylation process is controlled by histone deacetylases (HDAs), which catalyze removal of an acetyl group from the lysine residues of histone N-terminal tails. Although the HDAs are known to be involved in stress response and development in model plants, little is known about the roles of HDAs in crop species. Up to date, the HDAs in spinach (<i>Spinacia oleracea</i> L.) have not been identified and characterized. Here, we carried out genome-wide identification of <i>HDA</i> gene family in spinach, including physicochemical properties, subcellular localization prediction, phylogenetic analysis, conserved motifs, gene structure, Ka/Ks ratio, synteny analysis, functional prediction through <i>cis</i>-acting elements, and protein–protein interaction. Totally, six <i>HDAs</i> were identified from the spinach genome, and named <i>SoSRT1, SoSRT2, SoHDA1, SoHDA2, SoHDA3,</i> and <i>SoHDA4</i>. The phylogenetic tree showed that spinach HDAs were divided into four clades (Class I, Class II, RPD3-like, SIR2). RPD3/HDA1 family proteins and RPD3-like protein consisted of motif 1, Hist_deacetyl domain (PF00850), while two SIR2 class proteins included SIR2 domain (PF02146). Subcellular localization analysis indicated that the SoSRT and SoHDA proteins might localize in cytoskeleton, peroxisome, nucleus, and cytosol. <i>SoSRT1</i> and <i>SoSRT2</i> were located on chromosome 1, and the remaining four genes <i>(HDA1-4)</i> were distributed on chromosome 6. Ka/Ks ratio was lower than 1, suggesting that <i>HDA</i> genes might undergo purifying selection during evolution. Analysis of <i>cis-</i>acting elements revealed that the <i>SoHDA</i> genes participate in hormone regulation, light response, and abiotic stress response. New insights into the potential roles of histone deacetylases will be gained from this study in spinach, which is a cold-tolerant/heat-sensitive vegetable.</p>","PeriodicalId":9140,"journal":{"name":"Brazilian Journal of Botany","volume":"8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification, phylogenetic analysis, and functional prediction of histone deacetylase genes in Spinacia oleracea L\",\"authors\":\"Seher Yolcu, Seher Bahar Aciksoz\",\"doi\":\"10.1007/s40415-024-00995-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Histone deacetylation process is controlled by histone deacetylases (HDAs), which catalyze removal of an acetyl group from the lysine residues of histone N-terminal tails. Although the HDAs are known to be involved in stress response and development in model plants, little is known about the roles of HDAs in crop species. Up to date, the HDAs in spinach (<i>Spinacia oleracea</i> L.) have not been identified and characterized. Here, we carried out genome-wide identification of <i>HDA</i> gene family in spinach, including physicochemical properties, subcellular localization prediction, phylogenetic analysis, conserved motifs, gene structure, Ka/Ks ratio, synteny analysis, functional prediction through <i>cis</i>-acting elements, and protein–protein interaction. Totally, six <i>HDAs</i> were identified from the spinach genome, and named <i>SoSRT1, SoSRT2, SoHDA1, SoHDA2, SoHDA3,</i> and <i>SoHDA4</i>. The phylogenetic tree showed that spinach HDAs were divided into four clades (Class I, Class II, RPD3-like, SIR2). RPD3/HDA1 family proteins and RPD3-like protein consisted of motif 1, Hist_deacetyl domain (PF00850), while two SIR2 class proteins included SIR2 domain (PF02146). Subcellular localization analysis indicated that the SoSRT and SoHDA proteins might localize in cytoskeleton, peroxisome, nucleus, and cytosol. <i>SoSRT1</i> and <i>SoSRT2</i> were located on chromosome 1, and the remaining four genes <i>(HDA1-4)</i> were distributed on chromosome 6. Ka/Ks ratio was lower than 1, suggesting that <i>HDA</i> genes might undergo purifying selection during evolution. Analysis of <i>cis-</i>acting elements revealed that the <i>SoHDA</i> genes participate in hormone regulation, light response, and abiotic stress response. New insights into the potential roles of histone deacetylases will be gained from this study in spinach, which is a cold-tolerant/heat-sensitive vegetable.</p>\",\"PeriodicalId\":9140,\"journal\":{\"name\":\"Brazilian Journal of Botany\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s40415-024-00995-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40415-024-00995-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genome-wide identification, phylogenetic analysis, and functional prediction of histone deacetylase genes in Spinacia oleracea L
Histone deacetylation process is controlled by histone deacetylases (HDAs), which catalyze removal of an acetyl group from the lysine residues of histone N-terminal tails. Although the HDAs are known to be involved in stress response and development in model plants, little is known about the roles of HDAs in crop species. Up to date, the HDAs in spinach (Spinacia oleracea L.) have not been identified and characterized. Here, we carried out genome-wide identification of HDA gene family in spinach, including physicochemical properties, subcellular localization prediction, phylogenetic analysis, conserved motifs, gene structure, Ka/Ks ratio, synteny analysis, functional prediction through cis-acting elements, and protein–protein interaction. Totally, six HDAs were identified from the spinach genome, and named SoSRT1, SoSRT2, SoHDA1, SoHDA2, SoHDA3, and SoHDA4. The phylogenetic tree showed that spinach HDAs were divided into four clades (Class I, Class II, RPD3-like, SIR2). RPD3/HDA1 family proteins and RPD3-like protein consisted of motif 1, Hist_deacetyl domain (PF00850), while two SIR2 class proteins included SIR2 domain (PF02146). Subcellular localization analysis indicated that the SoSRT and SoHDA proteins might localize in cytoskeleton, peroxisome, nucleus, and cytosol. SoSRT1 and SoSRT2 were located on chromosome 1, and the remaining four genes (HDA1-4) were distributed on chromosome 6. Ka/Ks ratio was lower than 1, suggesting that HDA genes might undergo purifying selection during evolution. Analysis of cis-acting elements revealed that the SoHDA genes participate in hormone regulation, light response, and abiotic stress response. New insights into the potential roles of histone deacetylases will be gained from this study in spinach, which is a cold-tolerant/heat-sensitive vegetable.
期刊介绍:
The Brazilian Journal of Botany is an international journal devoted to publishing a wide-range of research in plant sciences: biogeography, cytogenetics, ecology, economic botany, physiology and biochemistry, morphology and anatomy, molecular biology and diversity phycology, mycology, palynology, and systematics and phylogeny.
The journal considers for publications original articles, short communications, reviews, and letters to the editor.
Manuscripts describing new taxa based on morphological data only are suitable for submission; however information from multiple sources, such as ultrastructure, phytochemistry and molecular evidence are desirable.
Floristic inventories and checklists should include new and relevant information on other aspects, such as conservation strategies and biogeographic patterns.
The journal does not consider for publication submissions dealing exclusively with methods and protocols (including micropropagation) and biological activity of extracts with no detailed chemical analysis.