Yanfeng Liu , Qi Chen , Jibing Chen , Junsheng Yang , Shijie Dong
{"title":"开发新型高频感应焊接薄壁 TA2 钛管制造技术","authors":"Yanfeng Liu , Qi Chen , Jibing Chen , Junsheng Yang , Shijie Dong","doi":"10.1016/j.pnsc.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the problems of low welding efficiency, large heat-affected zone, and poor welding quality in the process of welding thin-walled titanium tubes by argon arc welding, there are few studies on the use of high-frequency induction welding (HFIW) of thin-walled titanium alloy tubes. The evolution law of weld microstructure and mechanical properties of the thin-walled titanium tube needs to be further studied because of rapid welding speed and the small heat-affected zone of HFIW. Therefore, a novel manufacturing method via high-frequency induction welding is proposed in this paper to solve the existing problems. With an industrial-grade titanium TA2 tube (wall's thickness is 0.5 mm) as the research object, a comparative study is conducted in this research to examine the morphology, microstructure, microhardness, and tensile characteristics of welded joints at different welding power. The findings demonstrated a significant efficacy of HFIW in resolving these challenges. The mechanical properties and microstructue of heat-affected zone (HAZ) were characterized. The lowest hardness is measured at 202 HV, while the base material was recorded as 184 HV, when the welding speed of HFIW is set at 50 m/min. Meanwhile, the heat-affected zone has the highest hardness at 224 HV, a tensile strength of 446.8 MPa and a post-fracture elongation of 16%. The results showed that HFIW can not only greatly improve the welding efficiency, significantly improve the microstructure of weld joint and HAZ, and improve the mechanical properties of thin-walled titanium pipe, but also provide a highly feasible welding method for welding ultra-thin-walled pipes.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 2","pages":"Pages 314-322"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel fabricating thin-walled TA2 titanium tube via high-frequency induction welding\",\"authors\":\"Yanfeng Liu , Qi Chen , Jibing Chen , Junsheng Yang , Shijie Dong\",\"doi\":\"10.1016/j.pnsc.2024.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the problems of low welding efficiency, large heat-affected zone, and poor welding quality in the process of welding thin-walled titanium tubes by argon arc welding, there are few studies on the use of high-frequency induction welding (HFIW) of thin-walled titanium alloy tubes. The evolution law of weld microstructure and mechanical properties of the thin-walled titanium tube needs to be further studied because of rapid welding speed and the small heat-affected zone of HFIW. Therefore, a novel manufacturing method via high-frequency induction welding is proposed in this paper to solve the existing problems. With an industrial-grade titanium TA2 tube (wall's thickness is 0.5 mm) as the research object, a comparative study is conducted in this research to examine the morphology, microstructure, microhardness, and tensile characteristics of welded joints at different welding power. The findings demonstrated a significant efficacy of HFIW in resolving these challenges. The mechanical properties and microstructue of heat-affected zone (HAZ) were characterized. The lowest hardness is measured at 202 HV, while the base material was recorded as 184 HV, when the welding speed of HFIW is set at 50 m/min. Meanwhile, the heat-affected zone has the highest hardness at 224 HV, a tensile strength of 446.8 MPa and a post-fracture elongation of 16%. The results showed that HFIW can not only greatly improve the welding efficiency, significantly improve the microstructure of weld joint and HAZ, and improve the mechanical properties of thin-walled titanium pipe, but also provide a highly feasible welding method for welding ultra-thin-walled pipes.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 2\",\"pages\":\"Pages 314-322\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124000649\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124000649","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of a novel fabricating thin-walled TA2 titanium tube via high-frequency induction welding
Due to the problems of low welding efficiency, large heat-affected zone, and poor welding quality in the process of welding thin-walled titanium tubes by argon arc welding, there are few studies on the use of high-frequency induction welding (HFIW) of thin-walled titanium alloy tubes. The evolution law of weld microstructure and mechanical properties of the thin-walled titanium tube needs to be further studied because of rapid welding speed and the small heat-affected zone of HFIW. Therefore, a novel manufacturing method via high-frequency induction welding is proposed in this paper to solve the existing problems. With an industrial-grade titanium TA2 tube (wall's thickness is 0.5 mm) as the research object, a comparative study is conducted in this research to examine the morphology, microstructure, microhardness, and tensile characteristics of welded joints at different welding power. The findings demonstrated a significant efficacy of HFIW in resolving these challenges. The mechanical properties and microstructue of heat-affected zone (HAZ) were characterized. The lowest hardness is measured at 202 HV, while the base material was recorded as 184 HV, when the welding speed of HFIW is set at 50 m/min. Meanwhile, the heat-affected zone has the highest hardness at 224 HV, a tensile strength of 446.8 MPa and a post-fracture elongation of 16%. The results showed that HFIW can not only greatly improve the welding efficiency, significantly improve the microstructure of weld joint and HAZ, and improve the mechanical properties of thin-walled titanium pipe, but also provide a highly feasible welding method for welding ultra-thin-walled pipes.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.