{"title":"评估更快时间积分技术在地震波传播分析中的应用","authors":"Ali Lashgari , Aram Soroushian , Hamid Zafarani","doi":"10.1016/j.wavemoti.2024.103320","DOIUrl":null,"url":null,"abstract":"<div><p>To analyze structural systems’ oscillatory behaviors, time integration is a versatile broadly accepted time-consuming tool. In 2008, a technique, recently addressed as the SEB THAAT (Step-Enlargement-Based Time-History-Analysis-Acceleration-Technique), was proposed to accelerate the analysis when the excitation is available in digitized format. After many successful experiences regarding structural dynamic analysis, in this paper, it is tested whether the SEB THAAT can be successfully applied to seismic wave propagation analyses. As the main results; for wave propagation analyses, by using the SEB THAAT, we may be able to reduce the analysis run-time without significantly affecting the accuracy of the response; and the amount of the reduction is considerable and around those of structural dynamic analyses. Besides, when the behavior is highly oscillatory, application of the SEB THAAT may be unsuccessful, while the accuracy considerations also do not recommend using the SEB THAAT. The achievements broaden applicability of the SEB THAAT and, due to the improved efficiency, may increase the interest of structural engineers in seismic time history analysis.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of a technique for faster time integration in application to seismic wave propagation analysis\",\"authors\":\"Ali Lashgari , Aram Soroushian , Hamid Zafarani\",\"doi\":\"10.1016/j.wavemoti.2024.103320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To analyze structural systems’ oscillatory behaviors, time integration is a versatile broadly accepted time-consuming tool. In 2008, a technique, recently addressed as the SEB THAAT (Step-Enlargement-Based Time-History-Analysis-Acceleration-Technique), was proposed to accelerate the analysis when the excitation is available in digitized format. After many successful experiences regarding structural dynamic analysis, in this paper, it is tested whether the SEB THAAT can be successfully applied to seismic wave propagation analyses. As the main results; for wave propagation analyses, by using the SEB THAAT, we may be able to reduce the analysis run-time without significantly affecting the accuracy of the response; and the amount of the reduction is considerable and around those of structural dynamic analyses. Besides, when the behavior is highly oscillatory, application of the SEB THAAT may be unsuccessful, while the accuracy considerations also do not recommend using the SEB THAAT. The achievements broaden applicability of the SEB THAAT and, due to the improved efficiency, may increase the interest of structural engineers in seismic time history analysis.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000507\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000507","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Assessment of a technique for faster time integration in application to seismic wave propagation analysis
To analyze structural systems’ oscillatory behaviors, time integration is a versatile broadly accepted time-consuming tool. In 2008, a technique, recently addressed as the SEB THAAT (Step-Enlargement-Based Time-History-Analysis-Acceleration-Technique), was proposed to accelerate the analysis when the excitation is available in digitized format. After many successful experiences regarding structural dynamic analysis, in this paper, it is tested whether the SEB THAAT can be successfully applied to seismic wave propagation analyses. As the main results; for wave propagation analyses, by using the SEB THAAT, we may be able to reduce the analysis run-time without significantly affecting the accuracy of the response; and the amount of the reduction is considerable and around those of structural dynamic analyses. Besides, when the behavior is highly oscillatory, application of the SEB THAAT may be unsuccessful, while the accuracy considerations also do not recommend using the SEB THAAT. The achievements broaden applicability of the SEB THAAT and, due to the improved efficiency, may increase the interest of structural engineers in seismic time history analysis.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.