{"title":"基于旋转磁铁的机械天线在空气-海水-海底三层介质中的传播特性和磁场分布","authors":"S. P. Chen, Q. Zhou, J. Y. Zhang, S. Y. Wang","doi":"10.1155/2024/2023687","DOIUrl":null,"url":null,"abstract":"Aiming at the application requirements of underwater cross-domain communication, based on the equivalent relationship between the rotating permanent magnet and the orthogonal time-varying current loop, this paper establishes an air-seawater-seabed three-layer medium model and analyzes the magnetic field distribution and propagation characteristics of the rotating permanent magnet-based mechanical antenna (RMBMA). Based on the electromagnetic field simulation software FEKO, the influence of vertical rotation and horizontal rotation of RMBMA on the radiation magnetic field is analyzed. The magnetic field distribution and magnetic field attenuation characteristics of RMBMA at different depths are obtained by simulation. The influence of RMBMA operating frequency and magnetic moment on the propagation characteristics is studied. The research shows that the horizontal rotation of the magnetic source is better than the vertical rotation in the long-distance underwater communication. When the magnetic source and the receiving point are close to the interface of the medium, the magnetic field strength and the propagation distance can be relatively increased. With appropriate frequency and magnetic moment, the magnetic field strength and communication distance can be further increased.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":"22 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation Characteristics and Magnetic Field Distribution of Rotating Magnet-Based Mechanical Antenna in the Air-Seawater-Seabed Three-Layer Medium\",\"authors\":\"S. P. Chen, Q. Zhou, J. Y. Zhang, S. Y. Wang\",\"doi\":\"10.1155/2024/2023687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the application requirements of underwater cross-domain communication, based on the equivalent relationship between the rotating permanent magnet and the orthogonal time-varying current loop, this paper establishes an air-seawater-seabed three-layer medium model and analyzes the magnetic field distribution and propagation characteristics of the rotating permanent magnet-based mechanical antenna (RMBMA). Based on the electromagnetic field simulation software FEKO, the influence of vertical rotation and horizontal rotation of RMBMA on the radiation magnetic field is analyzed. The magnetic field distribution and magnetic field attenuation characteristics of RMBMA at different depths are obtained by simulation. The influence of RMBMA operating frequency and magnetic moment on the propagation characteristics is studied. The research shows that the horizontal rotation of the magnetic source is better than the vertical rotation in the long-distance underwater communication. When the magnetic source and the receiving point are close to the interface of the medium, the magnetic field strength and the propagation distance can be relatively increased. With appropriate frequency and magnetic moment, the magnetic field strength and communication distance can be further increased.\",\"PeriodicalId\":54392,\"journal\":{\"name\":\"International Journal of Antennas and Propagation\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2023687\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/2023687","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Propagation Characteristics and Magnetic Field Distribution of Rotating Magnet-Based Mechanical Antenna in the Air-Seawater-Seabed Three-Layer Medium
Aiming at the application requirements of underwater cross-domain communication, based on the equivalent relationship between the rotating permanent magnet and the orthogonal time-varying current loop, this paper establishes an air-seawater-seabed three-layer medium model and analyzes the magnetic field distribution and propagation characteristics of the rotating permanent magnet-based mechanical antenna (RMBMA). Based on the electromagnetic field simulation software FEKO, the influence of vertical rotation and horizontal rotation of RMBMA on the radiation magnetic field is analyzed. The magnetic field distribution and magnetic field attenuation characteristics of RMBMA at different depths are obtained by simulation. The influence of RMBMA operating frequency and magnetic moment on the propagation characteristics is studied. The research shows that the horizontal rotation of the magnetic source is better than the vertical rotation in the long-distance underwater communication. When the magnetic source and the receiving point are close to the interface of the medium, the magnetic field strength and the propagation distance can be relatively increased. With appropriate frequency and magnetic moment, the magnetic field strength and communication distance can be further increased.
期刊介绍:
International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media.
As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.