利用响应面方法研究 FDM 工艺参数对聚乳酸制件机械性能的影响

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Colloid and Polymer Science Pub Date : 2024-03-12 DOI:10.1007/s00396-024-05246-x
Hossein Afshari, Fatemeh Taher, Seyyed Amirhossein Alavi, Mahmoud Afshari, Mohammad Reza Samadi, Fatemeh Allahyari
{"title":"利用响应面方法研究 FDM 工艺参数对聚乳酸制件机械性能的影响","authors":"Hossein Afshari, Fatemeh Taher, Seyyed Amirhossein Alavi, Mahmoud Afshari, Mohammad Reza Samadi, Fatemeh Allahyari","doi":"10.1007/s00396-024-05246-x","DOIUrl":null,"url":null,"abstract":"<p>Today, additive manufacturing methods have received attention in various fields due to simplicity of the process, high production speed, as well as good physical and mechanical characteristics of printed parts. In this research, the effect of parameters such as the stacking angle, infill extrusion width, layer thickness, and bed temperature on the tensile strength, tensile force, impact energy, and flexural strength of PLA printed samples was investigated. To achieve the relationship between the input and output variables as well as the optimal conditions of the process parameters, the response surface methodology and the desirability function technique were used. The results showed that the tensile strength, tensile force, impact energy and flexural strength can be improved at stacking angle of 13.5º, infill extrusion width of 145%, layer thickness of 0.2 mm and bed temperature of 110 º C. In addition, when the optimal conditions of the process parameters are applied, the tensile strength, tensile force, impact energy and flexural strength are improved to 38.43 MPa, 1.48 kN, 1.86 J and 32.36 MPa, respectively.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the effects of FDM process parameters on the mechanical properties of parts produced from PLA using response surface methodology\",\"authors\":\"Hossein Afshari, Fatemeh Taher, Seyyed Amirhossein Alavi, Mahmoud Afshari, Mohammad Reza Samadi, Fatemeh Allahyari\",\"doi\":\"10.1007/s00396-024-05246-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Today, additive manufacturing methods have received attention in various fields due to simplicity of the process, high production speed, as well as good physical and mechanical characteristics of printed parts. In this research, the effect of parameters such as the stacking angle, infill extrusion width, layer thickness, and bed temperature on the tensile strength, tensile force, impact energy, and flexural strength of PLA printed samples was investigated. To achieve the relationship between the input and output variables as well as the optimal conditions of the process parameters, the response surface methodology and the desirability function technique were used. The results showed that the tensile strength, tensile force, impact energy and flexural strength can be improved at stacking angle of 13.5º, infill extrusion width of 145%, layer thickness of 0.2 mm and bed temperature of 110 º C. In addition, when the optimal conditions of the process parameters are applied, the tensile strength, tensile force, impact energy and flexural strength are improved to 38.43 MPa, 1.48 kN, 1.86 J and 32.36 MPa, respectively.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00396-024-05246-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00396-024-05246-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

如今,增材制造方法因其工艺简单、生产速度快以及打印部件具有良好的物理和机械特性而受到各个领域的关注。在这项研究中,研究了堆叠角、填充挤出宽度、层厚度和床层温度等参数对聚乳酸打印样品的拉伸强度、拉伸力、冲击能量和弯曲强度的影响。为了确定输入和输出变量之间的关系以及工艺参数的最佳条件,采用了响应面方法和可取函数技术。结果表明,在堆叠角为 13.5º、填充挤出宽度为 145%、层厚为 0.2 mm 和床层温度为 110 º C 的条件下,拉伸强度、拉伸力、冲击能和弯曲强度均有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studying the effects of FDM process parameters on the mechanical properties of parts produced from PLA using response surface methodology

Today, additive manufacturing methods have received attention in various fields due to simplicity of the process, high production speed, as well as good physical and mechanical characteristics of printed parts. In this research, the effect of parameters such as the stacking angle, infill extrusion width, layer thickness, and bed temperature on the tensile strength, tensile force, impact energy, and flexural strength of PLA printed samples was investigated. To achieve the relationship between the input and output variables as well as the optimal conditions of the process parameters, the response surface methodology and the desirability function technique were used. The results showed that the tensile strength, tensile force, impact energy and flexural strength can be improved at stacking angle of 13.5º, infill extrusion width of 145%, layer thickness of 0.2 mm and bed temperature of 110 º C. In addition, when the optimal conditions of the process parameters are applied, the tensile strength, tensile force, impact energy and flexural strength are improved to 38.43 MPa, 1.48 kN, 1.86 J and 32.36 MPa, respectively.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
期刊最新文献
A Schiff base hydrogel of oxidized okra gum and carboxymethylated chitosan: a biocompatible and biodegradable injectable system for drug delivery in wound care Hydrothermal aging behavior of poly(butylene adipate-co-terephthalate) mulch: influence of the hydrolysis resistance based on the different filling materials Modelling and prediction of mechanical properties of FFF-printed polycarbonate parts using ML and DA hybrid approach Conductive molecularly imprinted polymer based on poly(1,8-diaminonaphthalene) decorated on gold nanoparticles for controlled antibiotic release Crosslinking of polyvinyl alcohol with di, tri, and tetracarboxylic acids: an experimental investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1