{"title":"实时系统中分区调度的图注意网络方法","authors":"Seunghoon Lee;Jinkyu Lee","doi":"10.1109/LES.2024.3376801","DOIUrl":null,"url":null,"abstract":"Machine learning methods have been used to solve real-time scheduling problems but none has yet made an architecture that utilizes influences between real-time tasks as input features. This letter proposes a novel approach to partitioned scheduling in real-time systems using graph machine learning. We present a graph representation of real-time task sets that enable graph machine-learning schemes to capture the influence between real-time tasks. By using a graph attention network (GAT) with this method, our model successfully partitioned-schedule task sets that were previously deemed unschedulable by state-of-the-art partitioned scheduling algorithms. The GAT is used to establish relationships between nodes in the graph, which represent real-time tasks, and to learn how these relationships affect the schedulability of the system.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"457-460"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Graph Attention Network Approach to Partitioned Scheduling in Real-Time Systems\",\"authors\":\"Seunghoon Lee;Jinkyu Lee\",\"doi\":\"10.1109/LES.2024.3376801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning methods have been used to solve real-time scheduling problems but none has yet made an architecture that utilizes influences between real-time tasks as input features. This letter proposes a novel approach to partitioned scheduling in real-time systems using graph machine learning. We present a graph representation of real-time task sets that enable graph machine-learning schemes to capture the influence between real-time tasks. By using a graph attention network (GAT) with this method, our model successfully partitioned-schedule task sets that were previously deemed unschedulable by state-of-the-art partitioned scheduling algorithms. The GAT is used to establish relationships between nodes in the graph, which represent real-time tasks, and to learn how these relationships affect the schedulability of the system.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"457-460\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10472307/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10472307/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Graph Attention Network Approach to Partitioned Scheduling in Real-Time Systems
Machine learning methods have been used to solve real-time scheduling problems but none has yet made an architecture that utilizes influences between real-time tasks as input features. This letter proposes a novel approach to partitioned scheduling in real-time systems using graph machine learning. We present a graph representation of real-time task sets that enable graph machine-learning schemes to capture the influence between real-time tasks. By using a graph attention network (GAT) with this method, our model successfully partitioned-schedule task sets that were previously deemed unschedulable by state-of-the-art partitioned scheduling algorithms. The GAT is used to establish relationships between nodes in the graph, which represent real-time tasks, and to learn how these relationships affect the schedulability of the system.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.