SynBPS:用于生成事件日志数据的参数模拟框架

Mike Riess
{"title":"SynBPS:用于生成事件日志数据的参数模拟框架","authors":"Mike Riess","doi":"10.1177/00375497241233326","DOIUrl":null,"url":null,"abstract":"In the pursuit of ecological validity, current business process simulation methods are calibrated to data from existing processes. This is important for realistic what-if analysis in the context of these processes. However, this is not always the “right tool for the job.” To test hypotheses in the area of predictive process monitoring, it can be more helpful to simulate event-log data from a theoretical process, where all aspects can be manipulated. One example is when assessing the influence of process complexity or variability on the performance of a new prediction method. In this case, the ability to include control variables and systematically change process characteristics is a key to fully understanding their influence. Calibrating a simulation model from observed data alone can in these cases be limiting. This paper proposes a simulation framework, Synthetic Business Process Simulation (SynBPS), a Python library for the generation of event-log data from synthetic processes. Aspects such as process complexity, stability, trace distribution, duration distribution, and case arrivals can be fully controlled by the user. The overall architecture is described in detail, and a demonstration of the framework is presented.","PeriodicalId":501452,"journal":{"name":"SIMULATION","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SynBPS: a parametric simulation framework for the generation of event-log data\",\"authors\":\"Mike Riess\",\"doi\":\"10.1177/00375497241233326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the pursuit of ecological validity, current business process simulation methods are calibrated to data from existing processes. This is important for realistic what-if analysis in the context of these processes. However, this is not always the “right tool for the job.” To test hypotheses in the area of predictive process monitoring, it can be more helpful to simulate event-log data from a theoretical process, where all aspects can be manipulated. One example is when assessing the influence of process complexity or variability on the performance of a new prediction method. In this case, the ability to include control variables and systematically change process characteristics is a key to fully understanding their influence. Calibrating a simulation model from observed data alone can in these cases be limiting. This paper proposes a simulation framework, Synthetic Business Process Simulation (SynBPS), a Python library for the generation of event-log data from synthetic processes. Aspects such as process complexity, stability, trace distribution, duration distribution, and case arrivals can be fully controlled by the user. The overall architecture is described in detail, and a demonstration of the framework is presented.\",\"PeriodicalId\":501452,\"journal\":{\"name\":\"SIMULATION\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIMULATION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497241233326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIMULATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00375497241233326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了追求生态有效性,目前的业务流程模拟方法都是根据现有流程的数据进行校准的。这对于在这些流程背景下进行切合实际的假设分析非常重要。然而,这并不总是 "合适的工具"。要测试预测性流程监控领域的假设,模拟来自理论流程的事件日志数据可能更有帮助,因为理论流程的所有方面都可以进行操作。其中一个例子是评估流程复杂性或可变性对新预测方法性能的影响。在这种情况下,包含控制变量和系统改变过程特征的能力是充分了解其影响的关键。在这种情况下,仅根据观测数据校准仿真模型可能会受到限制。本文提出了一个仿真框架--合成业务流程仿真(SynBPS),这是一个用于生成合成流程事件日志数据的 Python 库。用户可以完全控制流程的复杂性、稳定性、跟踪分布、持续时间分布和案例到达等方面。本文详细介绍了整体架构,并演示了该框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SynBPS: a parametric simulation framework for the generation of event-log data
In the pursuit of ecological validity, current business process simulation methods are calibrated to data from existing processes. This is important for realistic what-if analysis in the context of these processes. However, this is not always the “right tool for the job.” To test hypotheses in the area of predictive process monitoring, it can be more helpful to simulate event-log data from a theoretical process, where all aspects can be manipulated. One example is when assessing the influence of process complexity or variability on the performance of a new prediction method. In this case, the ability to include control variables and systematically change process characteristics is a key to fully understanding their influence. Calibrating a simulation model from observed data alone can in these cases be limiting. This paper proposes a simulation framework, Synthetic Business Process Simulation (SynBPS), a Python library for the generation of event-log data from synthetic processes. Aspects such as process complexity, stability, trace distribution, duration distribution, and case arrivals can be fully controlled by the user. The overall architecture is described in detail, and a demonstration of the framework is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulating cyberattacks with extended Petri nets Special Issue: Engineering of Dependable Digital Twins Calibration method for microscopic traffic simulation considering lane difference Serial and parallel algorithms for short time horizon multi-attribute queries on stochastic multi-agent systems Agent-based simulation of citizens’ satisfaction in smart cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1