{"title":"计算用于无线电力应用的任意位置平面螺旋线圈之间的互感","authors":"Iftikhar Hussain, Dong-Kyun Woo","doi":"10.3233/jae-230060","DOIUrl":null,"url":null,"abstract":"Mutual inductance is one of the main parameters required to determine the power link’s performance (output voltage, efficiency) in wireless power transfer. The coils are often misaligned angularly in these applications, which affects the mutual inductance and thus the performance. Hence, an accurate calculation of mutual inductance is necessary to decide the working region of the coil. This paper presents an analytical calculation of mutual inductance between two planar spiral coils under angular misalignment conditions. By solving the Neumann integral formula, mutual inductance is derived for constant current-carrying coils, and the final mutual inductance value is calculated numerically. The influence of angular misalignment of the coil, which can be due to nutation and spin angles, on mutual inductance is studied in detail. The mutual inductance of the spiral coil is calculated for different misalignment cases. The accuracy of the calculation results is verified by comparing it with conventional formulas (mainly the Liu, the Babic formula, and the Poletkin formula) and by simulation using the finite element method. The proposed method is a more generalized and simpler one that can be used to calculate the mutual inductance of any size of coils, either spiral or circular, with any lateral and angular misalignments. Finally, a couple of spiral coils are fabricated to validate it experimentally. The comparison of the simulation and experiment results with the calculation result shows its accuracy. Thus, the proposed method can be applied to compute mutual inductance in any angularly misaligned coupling coils for the optimization of the wireless power transfer and their design.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of mutual inductance between arbitrarily positioned planar spiral coils for wireless power applications\",\"authors\":\"Iftikhar Hussain, Dong-Kyun Woo\",\"doi\":\"10.3233/jae-230060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutual inductance is one of the main parameters required to determine the power link’s performance (output voltage, efficiency) in wireless power transfer. The coils are often misaligned angularly in these applications, which affects the mutual inductance and thus the performance. Hence, an accurate calculation of mutual inductance is necessary to decide the working region of the coil. This paper presents an analytical calculation of mutual inductance between two planar spiral coils under angular misalignment conditions. By solving the Neumann integral formula, mutual inductance is derived for constant current-carrying coils, and the final mutual inductance value is calculated numerically. The influence of angular misalignment of the coil, which can be due to nutation and spin angles, on mutual inductance is studied in detail. The mutual inductance of the spiral coil is calculated for different misalignment cases. The accuracy of the calculation results is verified by comparing it with conventional formulas (mainly the Liu, the Babic formula, and the Poletkin formula) and by simulation using the finite element method. The proposed method is a more generalized and simpler one that can be used to calculate the mutual inductance of any size of coils, either spiral or circular, with any lateral and angular misalignments. Finally, a couple of spiral coils are fabricated to validate it experimentally. The comparison of the simulation and experiment results with the calculation result shows its accuracy. Thus, the proposed method can be applied to compute mutual inductance in any angularly misaligned coupling coils for the optimization of the wireless power transfer and their design.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230060\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
互感是决定无线功率传输中功率链路性能(输出电压、效率)的主要参数之一。在这些应用中,线圈通常会发生角度错位,从而影响互感,进而影响性能。因此,必须精确计算互感,以确定线圈的工作区域。本文介绍了在角度偏差条件下两个平面螺旋线圈之间互感的分析计算。通过求解诺依曼积分公式,得出了恒定载流线圈的互感,并通过数值计算得出了最终的互感值。详细研究了线圈角度偏差对互感的影响,这种偏差可能是由于转角和自旋角造成的。计算了不同错位情况下螺旋线圈的互感。通过与传统公式(主要是 Liu 公式、Babic 公式和 Poletkin 公式)的比较以及使用有限元法进行模拟,验证了计算结果的准确性。所提出的方法是一种更通用、更简单的方法,可用于计算任何尺寸的线圈的互感,无论是螺旋线圈还是圆形线圈,以及任何横向和角度偏差。最后,我们制作了几个螺旋线圈来进行实验验证。模拟和实验结果与计算结果的对比显示了其准确性。因此,所提出的方法可用于计算任何角度错位耦合线圈中的互感,以优化无线电力传输及其设计。
Calculation of mutual inductance between arbitrarily positioned planar spiral coils for wireless power applications
Mutual inductance is one of the main parameters required to determine the power link’s performance (output voltage, efficiency) in wireless power transfer. The coils are often misaligned angularly in these applications, which affects the mutual inductance and thus the performance. Hence, an accurate calculation of mutual inductance is necessary to decide the working region of the coil. This paper presents an analytical calculation of mutual inductance between two planar spiral coils under angular misalignment conditions. By solving the Neumann integral formula, mutual inductance is derived for constant current-carrying coils, and the final mutual inductance value is calculated numerically. The influence of angular misalignment of the coil, which can be due to nutation and spin angles, on mutual inductance is studied in detail. The mutual inductance of the spiral coil is calculated for different misalignment cases. The accuracy of the calculation results is verified by comparing it with conventional formulas (mainly the Liu, the Babic formula, and the Poletkin formula) and by simulation using the finite element method. The proposed method is a more generalized and simpler one that can be used to calculate the mutual inductance of any size of coils, either spiral or circular, with any lateral and angular misalignments. Finally, a couple of spiral coils are fabricated to validate it experimentally. The comparison of the simulation and experiment results with the calculation result shows its accuracy. Thus, the proposed method can be applied to compute mutual inductance in any angularly misaligned coupling coils for the optimization of the wireless power transfer and their design.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.