亚马逊树种对光环境的光合作用可塑性差异。

IF 4.2 3区 生物学 Q1 PLANT SCIENCES Plant Biology Pub Date : 2024-03-15 DOI:10.1111/plb.13632
A. d. R. Nina Junior, J. M. F. Maia, S. V. C. Martins, N. V. dos Santos Nina, K. C. P. da Costa, J. C. de Carvalho, M. Schramm Mielke, A. Nunes-Nesi, W. L. Araújo, J. F. de Carvalho Gonçalves
{"title":"亚马逊树种对光环境的光合作用可塑性差异。","authors":"A. d. R. Nina Junior,&nbsp;J. M. F. Maia,&nbsp;S. V. C. Martins,&nbsp;N. V. dos Santos Nina,&nbsp;K. C. P. da Costa,&nbsp;J. C. de Carvalho,&nbsp;M. Schramm Mielke,&nbsp;A. Nunes-Nesi,&nbsp;W. L. Araújo,&nbsp;J. F. de Carvalho Gonçalves","doi":"10.1111/plb.13632","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n \n </p><ul>\n \n \n <li>To investigate how and to what extent there are differences in the photosynthetic plasticity of trees in response to different light environments, six species from three successional groups (late successional, mid-successional, and pioneers) were exposed to three different light environments [deep shade – DS (5% full sunlight – FS), moderate shade – MS (35% FS) and full sunlight – FS].</li>\n \n \n <li>Maximum net photosynthesis (<i>A</i><sub>max</sub>), leaf N partitioning, stomatal, mesophile, and biochemical limitations (SL, ML, and BL, respectively), carboxylation velocity (<i>V</i><sub>cmax</sub>), and electron transport (<i>J</i><sub>max</sub>) rates, and the state of photosynthetic induction (IS) were evaluated.</li>\n \n \n <li>Higher values of <i>A</i><sub>max</sub>, <i>V</i><sub>cmax</sub>, and <i>J</i><sub>max</sub> in FS were observed for pioneer species, which invested the largest amount of leaf N in Rubisco. The lower IS for pioneer species reveals its reduced ability to take advantage of sunflecks. In general, the main photosynthetic limitations are diffusive, with SL and ML having equal importance under FS, and ML decreasing along with irradiance. The leaf traits, which are more determinant of the photosynthetic process, respond independently in relation to the successional group, especially with low light availability.</li>\n \n \n <li>An effective partitioning of leaf N between photosynthetic and structural components played a crucial role in the acclimation process and determined the increase or decrease of photosynthesis in response to the light conditions.</li>\n </ul>\n \n </div>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential photosynthetic plasticity of Amazonian tree species in response to light environments\",\"authors\":\"A. d. R. Nina Junior,&nbsp;J. M. F. Maia,&nbsp;S. V. C. Martins,&nbsp;N. V. dos Santos Nina,&nbsp;K. C. P. da Costa,&nbsp;J. C. de Carvalho,&nbsp;M. Schramm Mielke,&nbsp;A. Nunes-Nesi,&nbsp;W. L. Araújo,&nbsp;J. F. de Carvalho Gonçalves\",\"doi\":\"10.1111/plb.13632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>\\n \\n </p><ul>\\n \\n \\n <li>To investigate how and to what extent there are differences in the photosynthetic plasticity of trees in response to different light environments, six species from three successional groups (late successional, mid-successional, and pioneers) were exposed to three different light environments [deep shade – DS (5% full sunlight – FS), moderate shade – MS (35% FS) and full sunlight – FS].</li>\\n \\n \\n <li>Maximum net photosynthesis (<i>A</i><sub>max</sub>), leaf N partitioning, stomatal, mesophile, and biochemical limitations (SL, ML, and BL, respectively), carboxylation velocity (<i>V</i><sub>cmax</sub>), and electron transport (<i>J</i><sub>max</sub>) rates, and the state of photosynthetic induction (IS) were evaluated.</li>\\n \\n \\n <li>Higher values of <i>A</i><sub>max</sub>, <i>V</i><sub>cmax</sub>, and <i>J</i><sub>max</sub> in FS were observed for pioneer species, which invested the largest amount of leaf N in Rubisco. The lower IS for pioneer species reveals its reduced ability to take advantage of sunflecks. In general, the main photosynthetic limitations are diffusive, with SL and ML having equal importance under FS, and ML decreasing along with irradiance. The leaf traits, which are more determinant of the photosynthetic process, respond independently in relation to the successional group, especially with low light availability.</li>\\n \\n \\n <li>An effective partitioning of leaf N between photosynthetic and structural components played a crucial role in the acclimation process and determined the increase or decrease of photosynthesis in response to the light conditions.</li>\\n </ul>\\n \\n </div>\",\"PeriodicalId\":220,\"journal\":{\"name\":\"Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/plb.13632\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/plb.13632","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了研究不同光照环境下树木光合作用可塑性的差异及其程度,我们将三个演替组(晚演替组、中演替组和先锋组)的六个物种暴露在三种不同的光照环境中[深遮荫--DS(5%全日照--FS)、中度遮荫--MS(35%全日照--FS)和全日照--FS]。对最大净光合作用(Amax)、叶片氮分配、气孔、中间嗜碱性和生化限制(分别为 SL、ML 和 BL)、羧化速度(Vcmax)和电子传输速率(Jmax)以及光合诱导状态(IS)进行了评估。先驱物种在 FS 中的 Amax、Vcmax 和 Jmax 值较高,因为它们在 Rubisco 中投入的叶片 N 量最大。先驱物种的 IS 值较低,表明其利用日照裂隙的能力较弱。总的来说,主要的光合作用限制是扩散性的,在 FS 条件下,SL 和 ML 具有同等重要性,ML 随辐照度的降低而降低。对光合作用过程起决定作用的叶片性状与演替组别有关,尤其是在低光照条件下,叶片性状的反应是独立的。叶片氮在光合作用和结构成分之间的有效分配在适应过程中发挥了关键作用,并决定了光合作用在光照条件下的增减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential photosynthetic plasticity of Amazonian tree species in response to light environments

  • To investigate how and to what extent there are differences in the photosynthetic plasticity of trees in response to different light environments, six species from three successional groups (late successional, mid-successional, and pioneers) were exposed to three different light environments [deep shade – DS (5% full sunlight – FS), moderate shade – MS (35% FS) and full sunlight – FS].
  • Maximum net photosynthesis (Amax), leaf N partitioning, stomatal, mesophile, and biochemical limitations (SL, ML, and BL, respectively), carboxylation velocity (Vcmax), and electron transport (Jmax) rates, and the state of photosynthetic induction (IS) were evaluated.
  • Higher values of Amax, Vcmax, and Jmax in FS were observed for pioneer species, which invested the largest amount of leaf N in Rubisco. The lower IS for pioneer species reveals its reduced ability to take advantage of sunflecks. In general, the main photosynthetic limitations are diffusive, with SL and ML having equal importance under FS, and ML decreasing along with irradiance. The leaf traits, which are more determinant of the photosynthetic process, respond independently in relation to the successional group, especially with low light availability.
  • An effective partitioning of leaf N between photosynthetic and structural components played a crucial role in the acclimation process and determined the increase or decrease of photosynthesis in response to the light conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biology
Plant Biology 生物-植物科学
CiteScore
8.20
自引率
2.60%
发文量
109
审稿时长
3 months
期刊介绍: Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology. Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.
期刊最新文献
Linking phylogenetic niche conservatism in bacterial communities in sorghum root compartments revealed by the Hongyingzi cultivar. Ethyl methanesulfonate (EMS) mediated dwarfing mutation provides a basis for CaCO3 accumulation by enhancing photosynthetic performance in Ceratostigma willmottianum Stapf. Stilbene production as part of drought adaptation mechanisms in cultivated grapevine (Vitis vinifera L.) roots modulates antioxidant status. Correction to Blue and UV-B light synergistically induce anthocyanin accumulation by co-activating nitrate reductase gene expression in Anthocyanin fruit (Aft) tomato. Metabolite analysis of peach (Prunus persica L. Batsch) branches in response to freezing stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1