定量质谱成像(qMSI):教程。

IF 1.9 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Journal of Mass Spectrometry Pub Date : 2024-03-15 DOI:10.1002/jms.5009
Russell R. Kibbe, David C. Muddiman
{"title":"定量质谱成像(qMSI):教程。","authors":"Russell R. Kibbe,&nbsp;David C. Muddiman","doi":"10.1002/jms.5009","DOIUrl":null,"url":null,"abstract":"<p>Mass spectrometry imaging (MSI) is an analytical technique that enables the simultaneous detection of hundreds to thousands of chemical species while retaining their spatial information; usually, MSI is applied to biological tissues. Combining these elements can create ion images, which allows for the identification and localization of multiple chemical species within the sample. Being able to produce molecular images of biological tissues has already impacted the study of health and disease; however, the next logical step is being able to combine MSI with quantitative mass spectrometry methods to both quantify and determine the localization of disease progression or drug action. In this tutorial, we will detail the main factors to consider when designing a qMSI experiment and highlight the methods that have been developed to overcome these added complexities, specifically for those newer to the field of MSI.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5009","citationCount":"0","resultStr":"{\"title\":\"Quantitative mass spectrometry imaging (qMSI): A tutorial\",\"authors\":\"Russell R. Kibbe,&nbsp;David C. Muddiman\",\"doi\":\"10.1002/jms.5009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mass spectrometry imaging (MSI) is an analytical technique that enables the simultaneous detection of hundreds to thousands of chemical species while retaining their spatial information; usually, MSI is applied to biological tissues. Combining these elements can create ion images, which allows for the identification and localization of multiple chemical species within the sample. Being able to produce molecular images of biological tissues has already impacted the study of health and disease; however, the next logical step is being able to combine MSI with quantitative mass spectrometry methods to both quantify and determine the localization of disease progression or drug action. In this tutorial, we will detail the main factors to consider when designing a qMSI experiment and highlight the methods that have been developed to overcome these added complexities, specifically for those newer to the field of MSI.</p>\",\"PeriodicalId\":16178,\"journal\":{\"name\":\"Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jms.5009\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5009","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

质谱成像(MSI)是一种分析技术,可同时检测数百至数千种化学物质,并保留其空间信息;MSI 通常应用于生物组织。结合这些元素可生成离子图像,从而识别和定位样本中的多种化学物质。能够生成生物组织的分子图像已经对健康和疾病研究产生了影响;然而,下一个合理的步骤是能够将 MSI 与定量质谱方法相结合,以量化和确定疾病进展或药物作用的定位。在本教程中,我们将详细介绍在设计 qMSI 实验时需要考虑的主要因素,并重点介绍为克服这些新增复杂性而开发的方法,特别是针对 MSI 领域的新手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative mass spectrometry imaging (qMSI): A tutorial

Mass spectrometry imaging (MSI) is an analytical technique that enables the simultaneous detection of hundreds to thousands of chemical species while retaining their spatial information; usually, MSI is applied to biological tissues. Combining these elements can create ion images, which allows for the identification and localization of multiple chemical species within the sample. Being able to produce molecular images of biological tissues has already impacted the study of health and disease; however, the next logical step is being able to combine MSI with quantitative mass spectrometry methods to both quantify and determine the localization of disease progression or drug action. In this tutorial, we will detail the main factors to consider when designing a qMSI experiment and highlight the methods that have been developed to overcome these added complexities, specifically for those newer to the field of MSI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mass Spectrometry
Journal of Mass Spectrometry 化学-光谱学
CiteScore
5.10
自引率
0.00%
发文量
84
审稿时长
1.5 months
期刊介绍: The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions. The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.
期刊最新文献
Advancing Native Mass Spectrometry Toward Cellular Biology Strategies for Top–Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective B4C-Assisted Paper Spray Ionization Mass Spectrometry Issue Information Pharmacokinetic Analysis of Gatifloxacin and Dexamethasone in Rabbit Ocular Biofluid Using a Sensitive and Selective LC–MS/MS Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1