{"title":"真菌微管组织中心是一种进化上不稳定的结构。","authors":"Adam Grazzini, Ann M. Cavanaugh","doi":"10.1016/j.fgb.2024.103885","DOIUrl":null,"url":null,"abstract":"<div><p>For most Eukaryotic species the requirements of cilia formation dictate the structure of microtubule organizing centers (MTOCs). In this study we find that loss of cilia corresponds to loss of evolutionary stability for fungal MTOCs. We used iterative search algorithms to identify proteins homologous to those found in <em>Saccharomyces cerevisiae</em>, and <em>Schizosaccharomyces pombe</em> MTOCs, and calculated site-specific rates of change for those proteins that were broadly phylogenetically distributed. Our results indicate that both the protein composition of MTOCs as well as the sequence of MTOC proteins are poorly conserved throughout the fungal kingdom. To begin to reconcile this rapid evolutionary change with the rigid structure and essential function of the <em>S. cerevisiae</em> MTOC we further analyzed how structural interfaces among proteins influence the rates of change for specific residues within a protein. We find that a more stable protein may stabilize portions of an interacting partner where the two proteins are in contact. In summary, while the protein composition and sequences of the MTOC may be rapidly changing the proteins within the structure have a stabilizing effect on one another. Further exploration of fungal MTOCs will expand our understanding of how changes in the functional needs of a cell have affected physical structures, proteomes, and protein sequences throughout fungal evolution.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"172 ","pages":"Article 103885"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal microtubule organizing centers are evolutionarily unstable structures\",\"authors\":\"Adam Grazzini, Ann M. Cavanaugh\",\"doi\":\"10.1016/j.fgb.2024.103885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For most Eukaryotic species the requirements of cilia formation dictate the structure of microtubule organizing centers (MTOCs). In this study we find that loss of cilia corresponds to loss of evolutionary stability for fungal MTOCs. We used iterative search algorithms to identify proteins homologous to those found in <em>Saccharomyces cerevisiae</em>, and <em>Schizosaccharomyces pombe</em> MTOCs, and calculated site-specific rates of change for those proteins that were broadly phylogenetically distributed. Our results indicate that both the protein composition of MTOCs as well as the sequence of MTOC proteins are poorly conserved throughout the fungal kingdom. To begin to reconcile this rapid evolutionary change with the rigid structure and essential function of the <em>S. cerevisiae</em> MTOC we further analyzed how structural interfaces among proteins influence the rates of change for specific residues within a protein. We find that a more stable protein may stabilize portions of an interacting partner where the two proteins are in contact. In summary, while the protein composition and sequences of the MTOC may be rapidly changing the proteins within the structure have a stabilizing effect on one another. Further exploration of fungal MTOCs will expand our understanding of how changes in the functional needs of a cell have affected physical structures, proteomes, and protein sequences throughout fungal evolution.</p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"172 \",\"pages\":\"Article 103885\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184524000227\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000227","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Fungal microtubule organizing centers are evolutionarily unstable structures
For most Eukaryotic species the requirements of cilia formation dictate the structure of microtubule organizing centers (MTOCs). In this study we find that loss of cilia corresponds to loss of evolutionary stability for fungal MTOCs. We used iterative search algorithms to identify proteins homologous to those found in Saccharomyces cerevisiae, and Schizosaccharomyces pombe MTOCs, and calculated site-specific rates of change for those proteins that were broadly phylogenetically distributed. Our results indicate that both the protein composition of MTOCs as well as the sequence of MTOC proteins are poorly conserved throughout the fungal kingdom. To begin to reconcile this rapid evolutionary change with the rigid structure and essential function of the S. cerevisiae MTOC we further analyzed how structural interfaces among proteins influence the rates of change for specific residues within a protein. We find that a more stable protein may stabilize portions of an interacting partner where the two proteins are in contact. In summary, while the protein composition and sequences of the MTOC may be rapidly changing the proteins within the structure have a stabilizing effect on one another. Further exploration of fungal MTOCs will expand our understanding of how changes in the functional needs of a cell have affected physical structures, proteomes, and protein sequences throughout fungal evolution.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.