用于磁共振成像氧气定量的 pO2 报告复合水凝胶大胶囊装置。

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part A Pub Date : 2024-03-15 DOI:10.1002/jbm.a.37707
Amy E. Emerson, Yuka Sugamura, Jad Mazboudi, Tuhfah M. Abdallah, Charmayne D. Seaton, Azin Ghasemi, Vikram D. Kodibagkar, Jessica D. Weaver
{"title":"用于磁共振成像氧气定量的 pO2 报告复合水凝胶大胶囊装置。","authors":"Amy E. Emerson,&nbsp;Yuka Sugamura,&nbsp;Jad Mazboudi,&nbsp;Tuhfah M. Abdallah,&nbsp;Charmayne D. Seaton,&nbsp;Azin Ghasemi,&nbsp;Vikram D. Kodibagkar,&nbsp;Jessica D. Weaver","doi":"10.1002/jbm.a.37707","DOIUrl":null,"url":null,"abstract":"<p>Hydrogel cell encapsulation devices are a common approach to reduce the need for chronic systemic immunosuppression in allogeneic cell product transplantation. Macroencapsulation approaches are an appealing strategy, as they maximize graft retrievability and cell dosage within a single device; however, macroencapsulation devices face oxygen transport challenges as geometries increase from preclinical to clinical scales. Device design guided by computational approaches can facilitate graft oxygen availability to encapsulated cells in vivo but is limited without accurate measurement of oxygen levels within the transplant site and graft. In this study, we engineer pO<sub>2</sub> reporter composite hydrogels (PORCH) to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the proton Imaging of siloxanes to map tissue oxygenation levels (PISTOL) magnetic resonance imaging approach. We engineer two methods of incorporating siloxane oximetry reporters within hydrogel devices, an emulsion and microbead-based approach, and evaluate PORCH cytotoxicity on co-encapsulated cells and accuracy in quantifying oxygen tension in vitro. We find that both emulsion and microbead PORCH approaches enable accurate in situ oxygen quantification using PISTOL magnetic resonance oximetry, and that the emulsion-based PORCH approach results in higher spatial resolution.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 9","pages":"1506-1517"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pO2 reporter composite hydrogel macroencapsulation devices for magnetic resonance imaging oxygen quantification\",\"authors\":\"Amy E. Emerson,&nbsp;Yuka Sugamura,&nbsp;Jad Mazboudi,&nbsp;Tuhfah M. Abdallah,&nbsp;Charmayne D. Seaton,&nbsp;Azin Ghasemi,&nbsp;Vikram D. Kodibagkar,&nbsp;Jessica D. Weaver\",\"doi\":\"10.1002/jbm.a.37707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogel cell encapsulation devices are a common approach to reduce the need for chronic systemic immunosuppression in allogeneic cell product transplantation. Macroencapsulation approaches are an appealing strategy, as they maximize graft retrievability and cell dosage within a single device; however, macroencapsulation devices face oxygen transport challenges as geometries increase from preclinical to clinical scales. Device design guided by computational approaches can facilitate graft oxygen availability to encapsulated cells in vivo but is limited without accurate measurement of oxygen levels within the transplant site and graft. In this study, we engineer pO<sub>2</sub> reporter composite hydrogels (PORCH) to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the proton Imaging of siloxanes to map tissue oxygenation levels (PISTOL) magnetic resonance imaging approach. We engineer two methods of incorporating siloxane oximetry reporters within hydrogel devices, an emulsion and microbead-based approach, and evaluate PORCH cytotoxicity on co-encapsulated cells and accuracy in quantifying oxygen tension in vitro. We find that both emulsion and microbead PORCH approaches enable accurate in situ oxygen quantification using PISTOL magnetic resonance oximetry, and that the emulsion-based PORCH approach results in higher spatial resolution.</p>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"112 9\",\"pages\":\"1506-1517\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37707\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37707","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶细胞封装装置是减少异体细胞产品移植中长期全身免疫抑制需求的常用方法。大胶囊化方法是一种很有吸引力的策略,因为它们能在单个装置内最大限度地提高移植物的可回收性和细胞剂量;然而,随着几何尺寸从临床前扩大到临床规模,大胶囊化装置面临着氧气运输的挑战。以计算方法为指导的装置设计可以促进体内封装细胞的移植物氧供应,但如果不能准确测量移植部位和移植物内的氧含量,这种设计就会受到限制。在本研究中,我们利用硅氧烷的质子成像来绘制组织氧合水平(PISTOL)磁共振成像方法,设计了 pO2 报告复合水凝胶(PORCH),以实现对大包封装置内氧张力的时空测量。我们设计了两种在水凝胶装置中加入硅氧烷氧饱和度报告器的方法,一种是基于乳液的方法,另一种是基于微珠的方法,并评估了 PORCH 对共封装细胞的细胞毒性以及在体外量化氧张力的准确性。我们发现,乳液和微珠 PORCH 方法都能利用 PISTOL 磁共振血氧仪进行准确的原位氧定量,而基于乳液的 PORCH 方法具有更高的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pO2 reporter composite hydrogel macroencapsulation devices for magnetic resonance imaging oxygen quantification

Hydrogel cell encapsulation devices are a common approach to reduce the need for chronic systemic immunosuppression in allogeneic cell product transplantation. Macroencapsulation approaches are an appealing strategy, as they maximize graft retrievability and cell dosage within a single device; however, macroencapsulation devices face oxygen transport challenges as geometries increase from preclinical to clinical scales. Device design guided by computational approaches can facilitate graft oxygen availability to encapsulated cells in vivo but is limited without accurate measurement of oxygen levels within the transplant site and graft. In this study, we engineer pO2 reporter composite hydrogels (PORCH) to enable spatiotemporal measurement of oxygen tension within macroencapsulation devices using the proton Imaging of siloxanes to map tissue oxygenation levels (PISTOL) magnetic resonance imaging approach. We engineer two methods of incorporating siloxane oximetry reporters within hydrogel devices, an emulsion and microbead-based approach, and evaluate PORCH cytotoxicity on co-encapsulated cells and accuracy in quantifying oxygen tension in vitro. We find that both emulsion and microbead PORCH approaches enable accurate in situ oxygen quantification using PISTOL magnetic resonance oximetry, and that the emulsion-based PORCH approach results in higher spatial resolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
期刊最新文献
Soluble Proteins From Conventional and Organic Eggshell Membranes With Different Proteomic Profiles Show Similar In Vitro Biofunctions Dextran Sulfate-Modified and pH-Responsive Nanoprobes for Magnetic Resonance/Fluorescence Dual-Modality Imaging of Vulnerable Plaques Effects of Gamma Irradiation on Structural, Chemical, Bioactivity and Biocompatibility Characteristics of Bioactive Glass–Polymer Composite Film Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model Tuning Surface Chemistry Impacts on Cardiac Endothelial and Smooth Muscle Cell Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1