Jing Wang , Fuquan Huang , Xinyan Wang , Xi Zhuo Jiang , Kai H. Luo
{"title":"甲烷在空气中燃烧氨气中的作用:从微观到宏观","authors":"Jing Wang , Fuquan Huang , Xinyan Wang , Xi Zhuo Jiang , Kai H. Luo","doi":"10.1016/j.fuproc.2024.108075","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) has gained increasing recognition as a carbon-free fuel. To enhance NH<sub>3</sub> combustion, reactive gases, like methane (CH<sub>4</sub>), are usually added to the combustion system. In this work, the role of CH<sub>4</sub> in NH<sub>3</sub> combustion is systematically studied. A series of reactive force field molecular dynamic (ReaxFF MD) simulations are implemented to investigate effects of CH<sub>4</sub> addition on the consumption of NH<sub>3</sub> and the yields of nitrogen oxides (NO<sub>x</sub>) from the atomic perspective: CH<sub>4</sub> accelerates the consumption of NH<sub>3</sub> by shortening the decomposition time of the first NH<sub>3</sub> molecule and increasing the translational kinetic energy of the system; CH<sub>4</sub> modifies the yield of NO<sub>x</sub> by complicating the elementary reactions and introducing additional intermediates. The fuel ratio of CH<sub>4</sub> and NH<sub>3</sub> between 0.5 and 1 is suggested for a cleaner and enhanced NH<sub>3</sub> combustion. By summarising the findings from the latest publications and the present work, the role of CH<sub>4</sub> in NH<sub>3</sub> combustion is comprehensively analysed from the macroscale and microscale perspectives: CH<sub>4</sub> accelerates the progress of NH<sub>3</sub> combustion flame, activates chemical reactions, and aggravates NO<sub>x</sub> emissions at a low CH<sub>4</sub> content. Taking the NH<sub>3</sub>/CH<sub>4</sub> combustion as an example, this study provides an exclusive perspective to understand combustion phenomena from the microscale events to macroscale observations.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"256 ","pages":"Article 108075"},"PeriodicalIF":7.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000456/pdfft?md5=76f2c82de8aa124c480f6240811970e3&pid=1-s2.0-S0378382024000456-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Role of methane in ammonia combustion in air: From microscale to macroscale\",\"authors\":\"Jing Wang , Fuquan Huang , Xinyan Wang , Xi Zhuo Jiang , Kai H. Luo\",\"doi\":\"10.1016/j.fuproc.2024.108075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ammonia (NH<sub>3</sub>) has gained increasing recognition as a carbon-free fuel. To enhance NH<sub>3</sub> combustion, reactive gases, like methane (CH<sub>4</sub>), are usually added to the combustion system. In this work, the role of CH<sub>4</sub> in NH<sub>3</sub> combustion is systematically studied. A series of reactive force field molecular dynamic (ReaxFF MD) simulations are implemented to investigate effects of CH<sub>4</sub> addition on the consumption of NH<sub>3</sub> and the yields of nitrogen oxides (NO<sub>x</sub>) from the atomic perspective: CH<sub>4</sub> accelerates the consumption of NH<sub>3</sub> by shortening the decomposition time of the first NH<sub>3</sub> molecule and increasing the translational kinetic energy of the system; CH<sub>4</sub> modifies the yield of NO<sub>x</sub> by complicating the elementary reactions and introducing additional intermediates. The fuel ratio of CH<sub>4</sub> and NH<sub>3</sub> between 0.5 and 1 is suggested for a cleaner and enhanced NH<sub>3</sub> combustion. By summarising the findings from the latest publications and the present work, the role of CH<sub>4</sub> in NH<sub>3</sub> combustion is comprehensively analysed from the macroscale and microscale perspectives: CH<sub>4</sub> accelerates the progress of NH<sub>3</sub> combustion flame, activates chemical reactions, and aggravates NO<sub>x</sub> emissions at a low CH<sub>4</sub> content. Taking the NH<sub>3</sub>/CH<sub>4</sub> combustion as an example, this study provides an exclusive perspective to understand combustion phenomena from the microscale events to macroscale observations.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"256 \",\"pages\":\"Article 108075\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000456/pdfft?md5=76f2c82de8aa124c480f6240811970e3&pid=1-s2.0-S0378382024000456-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000456\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024000456","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Role of methane in ammonia combustion in air: From microscale to macroscale
Ammonia (NH3) has gained increasing recognition as a carbon-free fuel. To enhance NH3 combustion, reactive gases, like methane (CH4), are usually added to the combustion system. In this work, the role of CH4 in NH3 combustion is systematically studied. A series of reactive force field molecular dynamic (ReaxFF MD) simulations are implemented to investigate effects of CH4 addition on the consumption of NH3 and the yields of nitrogen oxides (NOx) from the atomic perspective: CH4 accelerates the consumption of NH3 by shortening the decomposition time of the first NH3 molecule and increasing the translational kinetic energy of the system; CH4 modifies the yield of NOx by complicating the elementary reactions and introducing additional intermediates. The fuel ratio of CH4 and NH3 between 0.5 and 1 is suggested for a cleaner and enhanced NH3 combustion. By summarising the findings from the latest publications and the present work, the role of CH4 in NH3 combustion is comprehensively analysed from the macroscale and microscale perspectives: CH4 accelerates the progress of NH3 combustion flame, activates chemical reactions, and aggravates NOx emissions at a low CH4 content. Taking the NH3/CH4 combustion as an example, this study provides an exclusive perspective to understand combustion phenomena from the microscale events to macroscale observations.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.