电动汽车锂电池电荷状态估计的综合模型构建

Q2 Energy Energy Informatics Pub Date : 2024-03-14 DOI:10.1186/s42162-024-00322-6
Yuanyuan Liu, Wenxin Dun
{"title":"电动汽车锂电池电荷状态估计的综合模型构建","authors":"Yuanyuan Liu,&nbsp;Wenxin Dun","doi":"10.1186/s42162-024-00322-6","DOIUrl":null,"url":null,"abstract":"<div><p>This research addresses the issue of State of Charge (SOC) prediction for electric vehicle batteries by employing a dynamic Kalman neural network model. The model is optimized using a Genetic algorithm to adjust the neural network weights. Additionally, a strategy involving support vector machines for model optimization is proposed. This strategy involves preprocessing the data, selecting appropriate kernel functions for training, and merging prediction results to enhance the stability of the model. Results indicated that the Dynamic Genetic Kalman Neural Network (DGKNN) model achieved the minimum prediction error percentage of only 0.1529% when the correction coefficient was set to 0.7. The DGKNN model consistently exhibited the lowest error percentage, average absolute error, mean square error, and root mean square error when handling small, medium, and large datasets. For instance, in the small dataset, the error percentage was only 0.1518, and the root mean square error was only 0.0604. The research findings demonstrated that the proposed model exhibited high real-time accuracy in predicting battery SOC, enabling real-time monitoring of battery operating parameters. The method proposed in this study can accurately predict the state of battery charge, extend the life of battery packs, and improve the performance of electric vehicles. It has important significance for promoting the development of the electric vehicle industry.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00322-6","citationCount":"0","resultStr":"{\"title\":\"Integrated model construction for state of charge estimation in electric vehicle lithium batteries\",\"authors\":\"Yuanyuan Liu,&nbsp;Wenxin Dun\",\"doi\":\"10.1186/s42162-024-00322-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research addresses the issue of State of Charge (SOC) prediction for electric vehicle batteries by employing a dynamic Kalman neural network model. The model is optimized using a Genetic algorithm to adjust the neural network weights. Additionally, a strategy involving support vector machines for model optimization is proposed. This strategy involves preprocessing the data, selecting appropriate kernel functions for training, and merging prediction results to enhance the stability of the model. Results indicated that the Dynamic Genetic Kalman Neural Network (DGKNN) model achieved the minimum prediction error percentage of only 0.1529% when the correction coefficient was set to 0.7. The DGKNN model consistently exhibited the lowest error percentage, average absolute error, mean square error, and root mean square error when handling small, medium, and large datasets. For instance, in the small dataset, the error percentage was only 0.1518, and the root mean square error was only 0.0604. The research findings demonstrated that the proposed model exhibited high real-time accuracy in predicting battery SOC, enabling real-time monitoring of battery operating parameters. The method proposed in this study can accurately predict the state of battery charge, extend the life of battery packs, and improve the performance of electric vehicles. It has important significance for promoting the development of the electric vehicle industry.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00322-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00322-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00322-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

这项研究通过采用动态卡尔曼神经网络模型来解决电动汽车电池的充电状态(SOC)预测问题。该模型采用遗传算法进行优化,以调整神经网络权重。此外,还提出了一种涉及支持向量机的模型优化策略。该策略包括预处理数据、选择适当的核函数进行训练,以及合并预测结果以增强模型的稳定性。结果表明,当修正系数设置为 0.7 时,动态遗传卡尔曼神经网络(DGKNN)模型的预测误差率最小,仅为 0.1529%。在处理小型、中型和大型数据集时,DGKNN 模型始终表现出最低的误差百分比、平均绝对误差、均方误差和均方根误差。例如,在小型数据集中,误差百分比仅为 0.1518,均方根误差仅为 0.0604。研究结果表明,所提出的模型在预测电池 SOC 方面具有很高的实时准确性,可以实现对电池运行参数的实时监控。本研究提出的方法可以准确预测电池的充电状态,延长电池组的使用寿命,提高电动汽车的性能。这对促进电动汽车行业的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated model construction for state of charge estimation in electric vehicle lithium batteries

This research addresses the issue of State of Charge (SOC) prediction for electric vehicle batteries by employing a dynamic Kalman neural network model. The model is optimized using a Genetic algorithm to adjust the neural network weights. Additionally, a strategy involving support vector machines for model optimization is proposed. This strategy involves preprocessing the data, selecting appropriate kernel functions for training, and merging prediction results to enhance the stability of the model. Results indicated that the Dynamic Genetic Kalman Neural Network (DGKNN) model achieved the minimum prediction error percentage of only 0.1529% when the correction coefficient was set to 0.7. The DGKNN model consistently exhibited the lowest error percentage, average absolute error, mean square error, and root mean square error when handling small, medium, and large datasets. For instance, in the small dataset, the error percentage was only 0.1518, and the root mean square error was only 0.0604. The research findings demonstrated that the proposed model exhibited high real-time accuracy in predicting battery SOC, enabling real-time monitoring of battery operating parameters. The method proposed in this study can accurately predict the state of battery charge, extend the life of battery packs, and improve the performance of electric vehicles. It has important significance for promoting the development of the electric vehicle industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Countermeasures to promote sustainable construction and coordinated development of healthy cities: a case study of Dandong City Calibration of flow differential pressure coefficients on pump-turbine by thermodynamic method Optimization configuration strategy for regional energy systems based on multiple uncertainties and demand response Energy management controllers: strategies, coordination, and applications Application research of UAV infrared diagnosis technology in intelligent inspection of substations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1