济州烤柑橘皮提取物通过调节脂质代谢对高脂饮食诱导的肥胖小鼠和 3T3-L1 脂肪细胞的抗肥胖作用

IF 1.7 3区 农林科学 Q4 CHEMISTRY, MEDICINAL Journal of medicinal food Pub Date : 2024-04-01 Epub Date: 2024-03-15 DOI:10.1089/jmf.2023.K.0299
Subin Bae, Seong-Il Kang, Hee Chul Ko, Jeongjin Park, Woojin Jun
{"title":"济州烤柑橘皮提取物通过调节脂质代谢对高脂饮食诱导的肥胖小鼠和 3T3-L1 脂肪细胞的抗肥胖作用","authors":"Subin Bae, Seong-Il Kang, Hee Chul Ko, Jeongjin Park, Woojin Jun","doi":"10.1089/jmf.2023.K.0299","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesis, lipolysis, and energy metabolism of adipocytes. In this study, the Jeju roasted peel extract from <i>Citrus unshiu</i> S.Markov. (JRC), which is discarded as opposed to the pulp of <i>C. unshiu</i> S.Markov., is commonly consumed to ameliorate obesity. To investigate the anti-obesity effect of JRC, these studies were conducted on differentiated 3T3-L1 cells and in high-fat diet-induced mice, and related methods were used to confirm whether it decreased lipid accumulation in adipocytes. The mechanism of inhibiting obesity by JRC was confirmed through mRNA expression studies. JRC suppressed lipid accumulation in adipocytes and adipose tissue, and significantly improved enzymes such as alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase and serum lipid profiles. In addition, it effectively modulated the expression of genes related to lipid and energy metabolism in adipose tissue. As a result, these findings suggest that JRC could be a therapeutic regulator of body fat accumulation by significantly alleviating the dis-regulation of intracellular lipid metabolism in adipocytes and by enhancement of energy metabolism (Approval No. CNU IACUC-YB-2023-98).</p>","PeriodicalId":16440,"journal":{"name":"Journal of medicinal food","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Obesity Effect of Jeju Roasted Citrus Peel Extract in High-Fat Diet-Induced Obese Mice and 3T3-L1 Adipocytes Via Lipid Metabolism Regulation.\",\"authors\":\"Subin Bae, Seong-Il Kang, Hee Chul Ko, Jeongjin Park, Woojin Jun\",\"doi\":\"10.1089/jmf.2023.K.0299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesis, lipolysis, and energy metabolism of adipocytes. In this study, the Jeju roasted peel extract from <i>Citrus unshiu</i> S.Markov. (JRC), which is discarded as opposed to the pulp of <i>C. unshiu</i> S.Markov., is commonly consumed to ameliorate obesity. To investigate the anti-obesity effect of JRC, these studies were conducted on differentiated 3T3-L1 cells and in high-fat diet-induced mice, and related methods were used to confirm whether it decreased lipid accumulation in adipocytes. The mechanism of inhibiting obesity by JRC was confirmed through mRNA expression studies. JRC suppressed lipid accumulation in adipocytes and adipose tissue, and significantly improved enzymes such as alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase and serum lipid profiles. In addition, it effectively modulated the expression of genes related to lipid and energy metabolism in adipose tissue. As a result, these findings suggest that JRC could be a therapeutic regulator of body fat accumulation by significantly alleviating the dis-regulation of intracellular lipid metabolism in adipocytes and by enhancement of energy metabolism (Approval No. CNU IACUC-YB-2023-98).</p>\",\"PeriodicalId\":16440,\"journal\":{\"name\":\"Journal of medicinal food\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medicinal food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1089/jmf.2023.K.0299\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medicinal food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/jmf.2023.K.0299","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

脂肪细胞中的脂质积累是由多种因素造成的,如不均衡的饮食习惯导致的营养过剩、运动量减少以及遗传因素。此外,脂肪细胞的分化、脂肪生成、脂肪分解和能量代谢等各种代谢系统失调也会加剧肥胖。在这项研究中,济州烤柑橘(Citrus unshiu S.Markov.(与 C. unshiu S.Markov. 的果肉相比,被丢弃的济州烤果皮提取物(JRC)通常被用来改善肥胖。为了研究 JRC 的抗肥胖作用,这些研究在分化的 3T3-L1 细胞和高脂饮食诱导的小鼠中进行,并使用相关方法确认它是否能减少脂肪细胞中的脂质积累。通过 mRNA 表达研究证实了 JRC 抑制肥胖的机制。JRC 可抑制脂肪细胞和脂肪组织中的脂质积累,明显改善丙氨酸氨基转移酶、天门冬氨酸氨基转移酶、γ-谷氨酰转移酶等酶和血清脂质谱。此外,它还能有效调节脂肪组织中与脂质和能量代谢有关的基因的表达。因此,这些研究结果表明,JRC可显著缓解脂肪细胞内脂质代谢的失调,并增强能量代谢,从而成为体内脂肪堆积的治疗调节剂(批准文号:CNU IACUC-YB-2023-98)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-Obesity Effect of Jeju Roasted Citrus Peel Extract in High-Fat Diet-Induced Obese Mice and 3T3-L1 Adipocytes Via Lipid Metabolism Regulation.

Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesis, lipolysis, and energy metabolism of adipocytes. In this study, the Jeju roasted peel extract from Citrus unshiu S.Markov. (JRC), which is discarded as opposed to the pulp of C. unshiu S.Markov., is commonly consumed to ameliorate obesity. To investigate the anti-obesity effect of JRC, these studies were conducted on differentiated 3T3-L1 cells and in high-fat diet-induced mice, and related methods were used to confirm whether it decreased lipid accumulation in adipocytes. The mechanism of inhibiting obesity by JRC was confirmed through mRNA expression studies. JRC suppressed lipid accumulation in adipocytes and adipose tissue, and significantly improved enzymes such as alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase and serum lipid profiles. In addition, it effectively modulated the expression of genes related to lipid and energy metabolism in adipose tissue. As a result, these findings suggest that JRC could be a therapeutic regulator of body fat accumulation by significantly alleviating the dis-regulation of intracellular lipid metabolism in adipocytes and by enhancement of energy metabolism (Approval No. CNU IACUC-YB-2023-98).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of medicinal food
Journal of medicinal food 医学-食品科技
CiteScore
4.50
自引率
0.00%
发文量
154
审稿时长
4.5 months
期刊介绍: Journal of Medicinal Food is the only peer-reviewed journal focusing exclusively on the medicinal value and biomedical effects of food materials. International in scope, the Journal advances the knowledge of the development of new food products and dietary supplements targeted at promoting health and the prevention and treatment of disease.
期刊最新文献
Hypoglycemic Activity of the Hydroalcoholic Extract of Porophyllum ruderale in CD1 Mice. Exploring the Molecular Mechanisms of Herbs in the Treatment of Hyperlipidemia Based on Network Pharmacology and Molecular Docking. The Public Health Risks of β-Hemolytic Bacillus pumilus Bacteria Resistant to Gastrointestinal Conditions from Medicinal Plant. Laurus nobilis L. leaves Suppress Alcohol-Related Liver Disease by Exhibiting Antioxidant and Anti-Inflammatory Effects in Alcohol-Treated Hepatocytes and Mice. Study of the Pharmacodynamic Material Basis and Mechanisms of the Action of Fubai Chrysanthemum in Relieving Visual Fatigue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1