Laura C. Ornelas , Eric W. Fish , Jacob C. Dooley , Megan Carroll , Scott E. Parnell , Joyce Besheer
{"title":"产前酒精、合成大麻素和共同暴露对青少年后代行为适应和成年后酒精自我管理的影响。","authors":"Laura C. Ornelas , Eric W. Fish , Jacob C. Dooley , Megan Carroll , Scott E. Parnell , Joyce Besheer","doi":"10.1016/j.ntt.2024.107341","DOIUrl":null,"url":null,"abstract":"<div><p>Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.</p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"102 ","pages":"Article 107341"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of prenatal alcohol, synthetic cannabinoid and co-exposure on behavioral adaptations in adolescent offspring and alcohol self-administration in adulthood\",\"authors\":\"Laura C. Ornelas , Eric W. Fish , Jacob C. Dooley , Megan Carroll , Scott E. Parnell , Joyce Besheer\",\"doi\":\"10.1016/j.ntt.2024.107341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.</p></div>\",\"PeriodicalId\":19144,\"journal\":{\"name\":\"Neurotoxicology and teratology\",\"volume\":\"102 \",\"pages\":\"Article 107341\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology and teratology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892036224000230\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036224000230","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The impact of prenatal alcohol, synthetic cannabinoid and co-exposure on behavioral adaptations in adolescent offspring and alcohol self-administration in adulthood
Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.